• Title/Summary/Keyword: Vehicle information recognition

Search Result 373, Processing Time 0.033 seconds

A prediction system for car dead zone using by vehicle recognition and traffic lane detection (차선 검출 및 차량 인식을 이용한 사각지대 예측 시스템)

  • Kim, Young-Joon;Kim, Yong-Deak
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.715-716
    • /
    • 2008
  • A dead zone prediction system for vehicles are implemented in this paper. To improve performance reliability and stability, we import two method to get a information between car and car, and car and road. One is traffic lane detection method, another is vecle recognition. In this paper, we explain the methods and whole structure about this system except for details.

  • PDF

RBFNNs-based Recognition System of Vehicle License Plate Using Distortion Correction and Local Binarization (왜곡 보정과 지역 이진화를 이용한 RBFNNs 기반 차량 번호판 인식 시스템)

  • Kim, Sun-Hwan;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1531-1540
    • /
    • 2016
  • In this paper, we propose vehicle license plate recognition system based on Radial Basis Function Neural Networks (RBFNNs) with the use of local binarization functions and canny edge algorithm. In order to detect the area of license plate and also recognize license plate numbers, binary images are generated by using local binarization methods, which consider local brightness, and canny edge detection. The generated binary images provide information related to the size and the position of license plate. Additionally, image warping is used to compensate the distortion of images obtained from the side. After extracting license plate numbers, the dimensionality of number images is reduced through Principal Component Analysis (PCA) and is used as input variables to RBFNNs. Particle Swarm Optimization (PSO) algorithm is used to optimize a number of essential parameters needed to improve the accuracy of RBFNNs. Those optimized parameters include the number of clusters and the fuzzification coefficient used in the FCM algorithm, and the orders of polynomial of networks. Image data sets are obtained by changing the distance between stationary vehicle and camera and then used to evaluate the performance of the proposed system.

A Study on the Motion Object Detection Method for Autonomous Driving (자율주행을 위한 동적 객체 인식 방법에 관한 연구)

  • Park, Seung-Jun;Park, Sang-Bae;Kim, Jung-Ha
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.547-553
    • /
    • 2021
  • Dynamic object recognition is an important task for autonomous vehicles. Since dynamic objects exhibit a higher collision risk than static objects, our own trajectories should be planned to match the future state of moving elements in the scene. Time information such as optical flow can be used to recognize movement. Existing optical flow calculations are based only on camera sensors and are prone to misunderstanding in low light conditions. In this regard, to improve recognition performance in low-light environments, we applied a normalization filter and a correction function for Gamma Value to the input images. The low light quality improvement algorithm can be applied to confirm the more accurate detection of Object's Bounding Box for the vehicle. It was confirmed that there is an important in object recognition through image prepocessing and deep learning using YOLO.

A Vehicle License Plate Recognition Using Intensity Variation and Geometric Pattern Vector (명암도 변화값과 기하학적 패턴벡터를 이용한 차량번호판 인식)

  • Lee, Eung-Ju;Seok, Yeong-Su
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.369-374
    • /
    • 2002
  • In this paper, we propose the react-time car license plate recognition algorithm using intensity variation and geometric pattern vector. Generally, difference of car license plate region between character and background is more noticeable than other regions. And also, car license plate region usually shows high density values as well as constant intensity variations. Based on these characteristics, we first extract car license plate region using intensity variations. Secondly, lightness compensation process is performed on the considerably dark and brightness input images to acquire constant extraction efficiency. In the proposed recognition step, we first pre-process noise reduction and thinning steps. And also, we use geometric pattern vector to extract features which independent on the size, translation, and rotation of input values. In the experimental results, the proposed method shows better computation times than conventional circular pattern vector and better extraction results regardless of irregular environment lighting conditions as well as noise, size, and location of plate.

Detection and Recognition of Vehicle License Plates using Deep Learning in Video Surveillance

  • Farooq, Muhammad Umer;Ahmed, Saad;Latif, Mustafa;Jawaid, Danish;Khan, Muhammad Zofeen;Khan, Yahya
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.121-126
    • /
    • 2022
  • The number of vehicles has increased exponentially over the past 20 years due to technological advancements. It is becoming almost impossible to manually control and manage the traffic in a city like Karachi. Without license plate recognition, traffic management is impossible. The Framework for License Plate Detection & Recognition to overcome these issues is proposed. License Plate Detection & Recognition is primarily performed in two steps. The first step is to accurately detect the license plate in the given image, and the second step is to successfully read and recognize each character of that license plate. Some of the most common algorithms used in the past are based on colour, texture, edge-detection and template matching. Nowadays, many researchers are proposing methods based on deep learning. This research proposes a framework for License Plate Detection & Recognition using a custom YOLOv5 Object Detector, image segmentation techniques, and Tesseract's optical character recognition OCR. The accuracy of this framework is 0.89.

A Car License Plate Recognition Using Colors Information, Morphological Characteristic and Neural Network (컬러 정보 및 형태학적 특징과 신경망을 이용한 차량 번호판 인식)

  • Cho, Jae-Hyun;Yang, Hwang-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.3
    • /
    • pp.304-308
    • /
    • 2010
  • In this paper, we propose a new method of recognizing the vehicle license plate using color space, morphological characteristics and ART2 algorithm. Morphological characteristics of old and/or new style vehicle license plate among the candidate regions are applied to remove noise areas using 8-directional contour tracking algorithm, then follow by the extraction of vehicle plate. From the extracted license plate area, plate morphological characteristics of each region are removed. After that, labeling algorithm to extract the individual characters are then combined. The classified individual character and numeric codes are applied to the ART2 algorithm for the learning and recognition. In order to evaluate the performance of our proposed extraction and recognition of vehicle license method, we have run experiments on 100 green plates and white plates. Experimental results shown that the proposed license plate extraction and recognition method was effective.

Recognition of Number Plate by using Color Information In Vehicle Image (차량 영상에서 Color 정보를 이용한 번호판 인식)

  • 박상윤;김윤동;권중장
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.05a
    • /
    • pp.193-198
    • /
    • 1998
  • 본 논문은 차량 영상에서 번호판을 인식하는 방법에 관하여 기술한다. 번호판이 가지는 수평 경계선을 Peak & Valley로 표현하고, 번호판의 Color 특성을 이용하여 번호판 영역을 추출한 뒤, 번호판 영역에서 히스토그램 기법을 이용하여 문자를 추출하고, Maximum Likely Hood에 의해 문자를 인식한다.

  • PDF

Measures to Reduce Traffic Accidents in School Zones using Artificial Intelligence

  • Park, Moon-Soo;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.162-164
    • /
    • 2022
  • Efforts are being made to prevent traffic accidents within the child protection zone. Efforts are being made to prevent accidents by enacting safety facilities and laws to prevent traffic accidents in the school zone. However, traffic accidents in school zones continue to occur. If the driver can know the situation in the child protection zone in advance, accidents can be reduced. In this paper, we design a camera that eliminates blind spots in school zones and a number recognition camera system that can collect pre-traffic information. Design a LIDAR system that recognizes vehicle speed and pedestrians. Design an LED guidance system that delivers information to drivers without smart devices. We study time series analysis and artificial intelligence algorithms that collect and process pedestrian and vehicle information recognized by cameras and LIDAR. In the artificial intelligence traffic accident prevention system learned by deep learning, before entering the school zone, the school zone information is sent to the driver through the Force Push Service and the school zone information is delivered to the driver on the LED sign. try to reduce accidents.

  • PDF

Development of Walking Guide Robot for the Blind (시각장애인을 위한 보행안내로봇 개발)

  • Yu K.H.;Yoon M.J.;Kwon T.K.;Kim N.G.;Kang J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.888-891
    • /
    • 2005
  • In this paper, the prototype of a walking guide robot with tactile display is introduced, and the psychophysical experiment of the tactile recognition for a tactile display is carried out and analyzed. The objective of this research is the development of a walking guide robot for the blind to walk safely. A walking guide robot consists of a guide vehicle and a tactile display device. A guide vehicle, located in the front of the walking blind, detects the obstacle using ultrasonic sensors and offers the information of position and walking direction acquired from GPS module to the walking blind by voice. The tactile display device, located in the handle which is connected with the guide vehicle by cane, offers the processed obstacle information such as position, size, moving, shape of obstacle and safe path, etc. The psychophysical experiments for the threshold of perception and recognition ability of tactile stimulation are carried out by the estimation of the subject group. As a result the appropriate tactile stimulus intensity and frequency to recognize tactile stimulation effectively are discussed and derived.

  • PDF

A Study about Preventing Improper Working of Equipment on ATS System by Signaling Equipment (신호장치에 의한 ATS 신호장치 오동작 방지에 대한 연구)

  • Ko, Young-Hwan;Choi, Kyu-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.579-587
    • /
    • 2008
  • Promotion of the line no.2 in Seoul Metro was changing from the existing signaling facilities for ATS(Automatic Train Stop) vehicles to the up-to-date signaling facilities for ATO(Automatic Train Operation). But, in consequence of conducting a trial run after being equipped with the ATO signaling facilities, the matter related to mix-operation with the existing ATS signaling facilities appeared. The operation of the existing ATS signaling system in combination with the ATO signaling system has made improper working related to frequency recognition of the ATS On-board Computerized Equipment. This obstructs operation of a working ATS vehicle. That is, as barring operation of an ATS vehicle that should proceed, it may make the proceeding ATS vehicle stop suddenly and after all, it will cause safety concerns. In this paper, we designed a wayside track occupancy detector that previously prevents improper working related to frequency recognition of the ATS On-board Computerized Equipment by gripping classification and working processes of operating trains throughout transmission of local signaling information from the existing facilities, which does not need to change or replace the existing signaling facilities. Furthermore, we described general characteristics of the wayside track occupancy detector and modeled the IFC(InterFace Contrivance) device and the logical circuit recognizing signal information. Then, we made an application program of PLC(programmable Logic Computer) based on the stated model. We, in relation to data transfer method, used the frame in TCP/IP transfer mode as the standard, and we demonstrated that ATO transmission frequency is intercepted.

  • PDF