• Title/Summary/Keyword: Vehicle extraction

Search Result 254, Processing Time 0.025 seconds

A Study on Automatic Vehicle Extraction within Drone Image Bounding Box Using Unsupervised SVM Classification Technique (무감독 SVM 분류 기법을 통한 드론 영상 경계 박스 내 차량 자동 추출 연구)

  • Junho Yeom
    • Land and Housing Review
    • /
    • v.14 no.4
    • /
    • pp.95-102
    • /
    • 2023
  • Numerous investigations have explored the integration of machine leaning algorithms with high-resolution drone image for object detection in urban settings. However, a prevalent limitation in vehicle extraction studies involves the reliance on bounding boxes rather than instance segmentation. This limitation hinders the precise determination of vehicle direction and exact boundaries. Instance segmentation, while providing detailed object boundaries, necessitates labour intensive labelling for individual objects, prompting the need for research on automating unsupervised instance segmentation in vehicle extraction. In this study, a novel approach was proposed for vehicle extraction utilizing unsupervised SVM classification applied to vehicle bounding boxes in drone images. The method aims to address the challenges associated with bounding box-based approaches and provide a more accurate representation of vehicle boundaries. The study showed promising results, demonstrating an 89% accuracy in vehicle extraction. Notably, the proposed technique proved effective even when dealing with significant variations in spectral characteristics within the vehicles. This research contributes to advancing the field by offering a viable solution for automatic and unsupervised instance segmentation in the context of vehicle extraction from image.

A Key-Frame Extraction Method based on HSV Color Model for Smart Vehicle Management System (스마트 차량 관리 시스템을 위한 HSV 색상모델 기반의 키 프레임 추출 기법)

  • Kwon, Young-Wook;Jung, Se-Hoon;Park, Dong-Gook;Sim, Chun-Bo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.4
    • /
    • pp.595-604
    • /
    • 2013
  • Currently, registered number of imported vehicles is increasing rapidly over the years. Accordingly, environment improvements of vehicle maintenance company for maintenance of luxury vehicle such as imported vehicle are continuously being made. In this paper, we propose a key frame extraction method based on HSV color model for smart vehicle management system implementation to offer for customer reliability of maintenance vehicle. After automatically recognize the license plates of the vehicle using vehicle license plate recognition system when the vehicle come in the car center, we check the repair history and request of the vehicle based on it. We implement mobile services which provide extracted key frame images to the user after extract key frames from vehicle repair video. In addition, we verify the superiority of key frame extraction method by applying a smart vehicle management system. Finally, we convert the RGB color to HSV color to improve the performance of proposed key frame extraction scheme. As a result, we confirmed that our scheme is more excellence about 30% in terms of recall than RGB color model from the performance evaluations.

Extraction of quasi-static component from vehicle-induced dynamic response using improved variational mode decomposition

  • Zhiwei Chen;Long Zhao;Yigui Zhou;Wen-Yu He;Wei-Xin Ren
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.155-169
    • /
    • 2023
  • The quasi-static component of the moving vehicle-induced dynamic response is promising in damage detection as it is sensitive to bridge damage but insensitive to environmental changes. However, accurate extraction of quasi-static component from the dynamic response is challenging especially when the vehicle velocity is high. This paper proposes an adaptive quasi-static component extraction method based on the modified variational mode decomposition (VMD) algorithm. Firstly the analytical solutions of the frequency components caused by road surface roughness, high-frequency dynamic components controlled by bridge natural frequency and quasi-static components in the vehicle-induced bridge response are derived. Then a modified VMD algorithm based on particle swarm algorithm (PSO) and mutual information entropy (MIE) criterion is proposed to adaptively extract the quasi-static components from the vehicle-induced bridge dynamic response. Numerical simulations and real bridge tests are conducted to demonstrate the feasibility of the proposed extraction method. The results indicate that the improved VMD algorithm could extract the quasi-static component of the vehicle-induced bridge dynamic response with high accuracy in the presence of the road surface roughness and measurement noise.

Vehicle extraction and tracking of stereo (스테레오를 이용한 차량 검출 및 추적)

  • Youn, Se-Jin;Woo, Dong-Min
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2962-2964
    • /
    • 1999
  • We know the traffic information about the velocity and position of vehicle by extraction and tracking vehicle from continuosly obtained road image of camera. The conventional method of vehicle detection indicate increment of error due to headlight and taillight in night road image. This paper show such as vehicle detection of binary, Edge detection. amalgamation of image are applied to extract the vehicle, and Kalman filter is adaptive methods for tracking position and velocity of vehicle.

  • PDF

Feature Area-based Vehicle Plate Recognition System(VPRS) (특징 영역 기반의 자동차 번호판 인식 시스템)

  • Jo, Bo-Ho;Jeong, Seong-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.6
    • /
    • pp.1686-1692
    • /
    • 1999
  • This paper describes the feature area-based vehicle plate recognition system(VPRS). For the extraction of vehicle plate in a vehicle image, we used the method which extracts vehicle plate area from a s vehicle image using intensity variation. For the extraction of the feature area containing character from the extracted vehicle plate, we used the histogram-based approach and the relative location information of individual characters in the extracted vehicle plate. The extracted feature area is used as the input vector of ART2 neural network. The proposed method simplifies the existing complex preprocessing the solves the problem of distortion and noise in the binarization process. In the difficult cases of character extraction by binarization process of previous method, our method efficiently extracts characters regions and recognizes it.

  • PDF

A Study on Vehicle Extraction and Tracking Using Stereo (스테레오 기법을 이용한 차량의 검출 및 추적에 관한 연구)

  • Yoon, Sei-Jin;Woo, Dong-Min;Kong, Gil-Young
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.12
    • /
    • pp.651-658
    • /
    • 2000
  • This paper presents a new method to extract traffic information such as number of passing vehicles and average speed by a pair of stereo road images. The whole process consists of the extraction of vehicles and the tracking of the extracted vehicles. For the extraction of vehicles, the outline of each vehicle is obtained by using binary region growing technique applied to disparity map based on multi-resolution stereo matching. The Kalman filter tracking algorithm is applied to the extracted vehicle outlines to determine the flow of vehicles. Experimental results show that the proposed method significantly improved recognition rate of vehicles over the conventional methods-frame difference and background elimination methods.

  • PDF

Enhanced Extraction of Traversable Region by Combining Scene Clustering with 3D World Modeling based on CCD/IR Image (CCD/IR 영상 기반의 3D 월드모델링과 클러스터링의 통합을 통한 주행영역 추출 성능 개선)

  • Kim, Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.107-115
    • /
    • 2008
  • Accurate extraction of traversable region is a critical issue for autonomous navigation of unmanned ground vehicle(UGV). This paper introduces enhanced extraction of traversable region by combining scene clustering with 3D world modeling using CCD(Charge-Coupled Device)/IR(Infra Red) image. Scene clustering is developed with K-means algorithm based on CCD and IR image. 3D world modeling is developed by fusing CCD and IR stereo image. Enhanced extraction of traversable regions is obtained by combining feature of extraction with a clustering method and a geometric characteristic of terrain derived by 3D world modeling.

Recognition of Car Plate using Gray Brightness Variation, HSI Information and Enhanced ART2 Algorithm (명암도 변화 및 HSI 정보와 개선된 ART2 알고리즘을 이용한 차량 번호판 인식)

  • 김광백;김영주
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.379-387
    • /
    • 2001
  • We proposed an enhanced extraction method of vehicle plate, in which both the brightness variation of gray and the Hue value of HSI color model were used. For the extraction of the vehicle plate from a vehicle image, first of all, candidate regions for the vehicle plate were extracted from the image by using the property of brightness variation of the image. A real place region was determined among candidate regions by the density of pixels with the Hue value of green and white. For- extracting the feature area containing characters from the extracted vehicle plate, we used the histogram-based approach of individual characters. And we proposed and applied for the recognition of characters the enhanced ART2 algorithm which support the dynamical establishment of the vigilance threshold with the genera]iced union operator of Yager. In addition, we propose an enhanced SOSL algorithm which is integrated both enhanced ART2 and supervised learning methods. The performance evaluation was performed using 100's real vehicle images and the evaluation results demonstrated that the extraction rates of tole proposed extraction method were improved, compared with that of previous methods based un brightness variation, RGB and HSI individually . Furthermore, the recognition rates of the proposed algorithms were improved much more than that of the conventional ART2 and BP algorithms.

  • PDF

Night-time Vehicle Detection Based On Multi-class SVM (다중-클래스 SVM 기반 야간 차량 검출)

  • Lim, Hyojin;Lee, Heeyong;Park, Ju H.;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.5
    • /
    • pp.325-333
    • /
    • 2015
  • Vision based night-time vehicle detection has been an emerging research field in various advanced driver assistance systems(ADAS) and automotive vehicle as well as automatic head-lamp control. In this paper, we propose night-time vehicle detection method based on multi-class support vector machine(SVM) that consists of thresholding, labeling, feature extraction, and multi-class SVM. Vehicle light candidate blobs are extracted by local mean based thresholding following by labeling process. Seven geometric and stochastic features are extracted from each candidate through the feature extraction step. Each candidate blob is classified into vehicle light or not by multi-class SVM. Four different multi-class SVM including one-against-all(OAA), one-against-one(OAO), top-down tree structured and bottom-up tree structured SVM classifiers are implemented and evaluated in terms of vehicle detection performances. Through the simulations tested on road video sequences, we prove that top-down tree structured and bottom-up tree structured SVM have relatively better performances than the others.

Efficient Lane Detection for Preceding Vehicle Extraction by Limiting Search Area of Sequential Images (전방의 차량포착을 위한 연속영상의 대상영역을 제한한 효율적인 차선 검출)

  • Han, Sang-Hoon;Cho, Hyung-Je
    • The KIPS Transactions:PartB
    • /
    • v.8B no.6
    • /
    • pp.705-717
    • /
    • 2001
  • In this paper, we propose a rapid lane detection method to extract a preceding vehicle from sequential images captured by a single monocular CCD camera. We detect positions of lanes for an individual image within the limited area that would not be hidden and thereby compute the slopes of the detected lanes. Then we find a search area where vehicles would exist and extract the position of the preceding vehicle within the area with edge component by applying a structured method. To verify the effects of the proposed method, we capture the road images with a notebook PC and a CCD camera for PC and present the results such as processing time for lane detection, accuracy and vehicles detection against the images.

  • PDF