• Title/Summary/Keyword: Vehicle drag force

Search Result 52, Processing Time 0.037 seconds

A Numerical Analysis of Counter Jet Flow Effect on the Blunt-Body Vehicle (역분사 유동이 초음속 비행체에 미치는 영향에 대한 수치해석적 연구)

  • Seo Duck Kyo;Seo Jeong Il;Song Dong Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.29-34
    • /
    • 2002
  • TIn this study, the counter-jet flows which designed for improvement of aerodynamic performance of the blunt body vehicle have been analyzed. The variations of the drag force and jet penetration depth due to changes in the stagnation properties of counter jet new such as total pressure, mach number, and total temperature. The counter jet flow, which is injected toward incoming supersonic freestream at stagnation region of blunt cone-cylinder vehicle, have been studied by using upwind flux difference splitting navier-stokes method. The changes in the stagnation pressure and Mach number resulted in large effects on the wall pressure and drag force, on the other hand tile total temperature changes did not.

  • PDF

Numerical Analysis for Drag Force of Underwater Vehicle with Exhaust Injected inside Supercavitation Cavity (초공동 수중비행체의 공동영역 내부에서 분사된 배기가스가 수중비행체의 항력에 미치는 영향에 대한 수치해석적 연구)

  • Yoo, Sang Won;Lee, Woo Keun;Kim, Tea Soon;Kwack, Young Kyun;Ko, Sung Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.12
    • /
    • pp.913-919
    • /
    • 2015
  • A supercavitating vehicle has a speed of more than 300 km/h in water. A numerical analysis of the flow around a supercavitating vehicle must deal with a multiphase flow consisting of the water, vapor and exhaust gas because the vehicle is powered by roket propulsion. The effect of the exhaust gas on the vehicle is an important part in the study of the performance of the supercavitating vehicle. In the present study, the effect of the exhaust gas on the drag of vehicle was investigated by conducting numerical analysis. When there is no exhaust gas, drag of vehicle is affected by re-entrant. In the case with rocket propulsion, the exhaust gas reduces the influence of re-entrant. The exhaust gas also creates Mach disk and it changes drag profile.

Integrated dynamics modeling for supercavitating vehicle systems

  • Kim, Seonhong;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.346-363
    • /
    • 2015
  • We have performed integrated dynamics modeling for a supercavitating vehicle. A 6-DOF equation of motion was constructed by defining the forces and moments acting on the supercavitating body surface that contacted water. The wetted area was obtained by calculating the cavity size and axis. Cavity dynamics were determined to obtain the cavity profile for calculating the wetted area. Subsequently, the forces and moments acting on each wetted part-the cavitator, fins, and vehicle body-were obtained by physical modeling. The planing force-the interaction force between the vehicle transom and cavity wall-was calculated using the apparent mass of the immersed vehicle transom. We integrated each model and constructed an equation of motion for the supercavitating system. We performed numerical simulations using the integrated dynamics model to analyze the characteristics of the supercavitating system and validate the modeling completeness. Our research enables the design of high-quality controllers and optimal supercavitating systems.

Effects of Rear Diffuser Size on the Driving Performance of a Passenger Car (자동차의 주행 성능에 미치는 리어 디퓨저 크기의 영향)

  • Lee, Gyo Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.655-661
    • /
    • 2019
  • This study examined the change in driving performance according to the starting position of the rear diffuser of a vehicle. To accomplish this, the CATIA 3D design program was used to model the vehicle with reference to a commercial SUV vehicle and design the rear diffuser to start from 300, 400, and 500 mm from the rear tire. The flow and drag change were analyzed and the change in air flow was confirmed using Fluent, a flow analysis program at a vehicle traveling speed of 60, 100, and 140 km/h. The rear diffuser reduced the lift and drag forces compared to no diffuser regardless of the starting position. This is because if there is a rear diffuser, it will reduce the vortex phenomenon by suppressing the flow separation that occurs when air is drawn out from the rear portion of the vehicle. In this study, the starting point SP 400 was determined to be the optimal condition because the lift force was the smallest at SP 400 and the lift reduction effect was the best.

A Study on the Motion Analysis and Design Optimization of a Ducted Type AUV (Autonomous Underwater Vehicle) by Using CFD (Computational Fluid Dynamics) Analysis (CFD 해석을 이용한 덕트형 자율무인잠수정의 운동해석 및 설계 최적화에 관한 연구)

  • Joung, Tae-Hwan;Sammut, Karl;He, Fangpo;Lee, Seung-Keon
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.48-53
    • /
    • 2009
  • Autonomous Underwater Vehicles (AUV's) provide an important means for collecting detailed scientific information from the ocean depths. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a design method that uses Computational Fluid Dynamics (CFD) to determine the hull resistance of an AUV under development. The CFD results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) of an AUV with a ducted propeller. This paper also discusses the optimization of the AUV hull profile to reduce the total resistance. This paper demonstrates that shape optimization in a conceptual design is possible by using a commercial CFD package. Optimum design work to minimize the drag force of an AUV was carried out, for a given object function and constraints.

Shape optimization of an autonomous underwater vehicle with a ducted propeller using computational fluid dynamics analysis

  • Joung, Tae-Hwan;Sammut, Karl;He, Fangpo;Lee, Seung-Keon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.44-56
    • /
    • 2012
  • Autonomous Underwater Vehicles (AUVs) provide a useful means of collecting detailed oceano-graphic information. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a procedure using Computational Fluid Dynamics (CFD) for determining the hull resistance of an AUV under development, for a given propeller rotation speed and within a given range of AUV velocities. The CFD analysis results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) around the AUV hull and its ducted propeller. The paper then proceeds to present a methodology for optimizing the AUV profile in order to reduce the total resistance. This paper demonstrates that shape optimization of conceptual designs is possible using the commercial CFD package contained in Ansys$^{TM}$. The optimum design to minimize the drag force of the AUV was identified for a given object function and a set of constrained design parameters.

A DESIGN OPTIMIZATION STUDY OF BLUNT NOSE HYPERSONIC FLIGHT VEHICLE MINIMIZING SURFACE HEAT-TRANSFER RATE AND DRAG (표면 열전달율과 항력을 최소화한 극초음속 비행체 선두부 형상 최적설계)

  • Lim S.;Seo J. I.;Kim S. D.;Song D. J.
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.27-35
    • /
    • 2005
  • A design optimization of hypersonic flight vehicle has been studied by using upwind Navier-Stokes method and numerical optimization method. CFD method is linked to numerical optimization method by using a Bezier curve and a design optimization of blunt nose hypersonic flight vehicle has been studied. Heat transfer coefficient and drag coefficient are selected as objective functions or design constraints. The Bezier curve-based shape function was applied to blunt body shape.

Study on the fluid resistance coefficient for control simulation of an underwater vehicle (수중로봇 제어 시뮬레이션을 위한 유체저항계수 연구)

  • Park, Sang-Wook;Kim, Min-Soo;Sohn, Jeong-Hyun;Baek, Woon-Kyung
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.24-29
    • /
    • 2016
  • Remotely operated vehicles or autonomous underwater vehicles have been used for exploiting seabed natural resources. In this study, the autonomous underwater vehicle of hovering type(HAUV) is developed to observe underwater objects in close distance. A dynamic model with six degrees of freedom is established, capturing the motion characteristics of the HAUV. The equations of motion are generated for the dynamic control simulation of the HAUV. The added mass, drag and lift forces are included in the computer model. Computational fluid dynamics simulation is carried out using this computer model. The drag coefficients are produced from the CFD.

A Study on Vehicle Drag Coefficients in Domestic Road Tunnels (국내 도로터널내 차량항력계수 관련 연구)

  • Lee, Chang-Woo;Lee, Kyeong-Bok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.313-321
    • /
    • 2005
  • Drag coefficient is one of the critical design factors to quantify the piston effect in vehicle tunnels. Several problems are raised on the drag coefficient currently applied for the ventilation system design; unverified adoption of the projected frontal area of the vehicle from the foreign study in the past, and lack of consideration for the slip-streaming effect. This study aims at better estimation of the traffic-induced ventilation force in the local tunnels. Values for the projected frontal area of the vehicles running on the local roads at present are proposed and results of an extensive CFD study are studied on the slip-streaming effects in various traffic conditions to quantify $K_{blockage}$ and the drag coefficient in the domestic tunnels.

  • PDF

The Consideration On The Rated Electric Power of The Linear Induction Motor for The Propulsion of a Vehicle (차량 추진용 리니어모터의 설계를 위한 정격산정에 관한 검토)

  • Jang, S.M.;Hong, J.P.;Jeong, R.G.;Lee, J.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.54-56
    • /
    • 1997
  • In this paper, The considerable matters for the calculation and determination of the rated electric power of the three phase Linear Induction Motor for the propulsion of a vehicle, is treated with inverter performance with harmonics, aerodynamic drag force, running resistance, normal force.

  • PDF