• Title/Summary/Keyword: Vehicle crash

Search Result 411, Processing Time 0.027 seconds

The Study on the Effect of Seatbelt anchorage points using Q6 in sled test (좌석안전띠 부착장치 위치에 따른 어린이 충돌안전성 연구)

  • Kim, Siwoo;Ryu, Hyun;Kim, Yonggil;Baek, Seonhyeon;Kim, Minwoo;Park, Jihun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.2
    • /
    • pp.49-54
    • /
    • 2014
  • Development in vehicle industry could increase interest in children's safety recently. However the research of children safety is not being conducted as many as that of adult's. Especially the basic study for the vehicle crash on-board children was not much. This study focused on the effect of seatbelt anchorage points to evaluate children's safety in frontal crash. The current regulation of the seatbelt anchorage points is suitable for ranged from female 5% to male 95%. The assessment of children's safety at buckle up of no used CRS(child restraint system) was performed using frontal sled tests. The frontal crash pulse in sled tests was designed to the average of about 30 KNCAP frontal crash pulses. To reduce number of experiments, DOE is used. The Q6 child dummy and standard seat in UN R 129 were used. According to the analysis of test results, children's safety has been influenced by the points of seatbelt anchorage.

Car-to-Car Frontal Impact Modeling using Spring-Mass Model (Spring-Mass 모델을 이용한 차대차 정면충돌 모델링)

  • Lim, Jaemoon;Jung, Geunseup
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.2
    • /
    • pp.8-14
    • /
    • 2015
  • The objective of this study was to construct the spring-mass models for the car-to-car frontal impact crash. The SISAME software was utilized to extract the spring-mass models using the data from US-NCAP frontal crash tests. The spring-mass models of a compact car and a midsize car could effectively approximate the crash characteristics for the full frontal barrier impact and the car-to-car frontal impact scenarios. Compared to the barrier crash tests, the dummy injuries of midsize car decreased, while the dummy injuries of compact car increased, under the frontal car-to-car crash circumstances.

Optimal Design for a Structure Using Design of Experiment (실험계획법을 이용한 구조물의 최적설계)

  • 고성호;한석영;최형연
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.34-39
    • /
    • 2001
  • The median barrier is one of the roadside hardware to prevent severe human and property damage from highway traffic accidents. The foreign standard of concrete median barrier was introduced and implemented without modification fitting to domestic vehicle and highway condition. In a car accident, median barrier doesn't protect vehicle effectively, especially for heavy vehicle such as bus and heavy truck. The purpose of this study is to develop the optimal performance design of concrete median barrier using the design of experiment with crash simulation analysis which is done by Pam-Crash that is one of the commercial crash simulation software. As a result of this study, an optimal design of concrete median barrier is obtained considering von Mises stress, volume and COG acceleration of truck.

  • PDF

A study on the sled test methods for IIHS small overlap performance development (IIHS small overlap 성능개발을 위한 대차 시험 방법 연구)

  • Oh, Hyungjooon;Kim, Seungki;Kim, Sungwon;Lim, Kyungho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.11-15
    • /
    • 2013
  • Small overlap crash caused fatal injury in real-world crash. IIHS(Insurance Institute for Highway Safety) proposed the small overlap test. The objective of this study is to analyze dummy injury criteria and dummy excursion on the sled reinforced body angle. Result of the comparisons of dummy injury criteria of a head, neck, and chest was best correlation between sled and vehicle test on base $angle+3^{\circ}$. However, lower extremity was not correlation because sled test could not copy of intrusion. There were a correlation between dummy movement and sled reinforced body angle. Sled reinforced body angle affects the lateral direction of excursion more than longitudinal excursion.

A Study of Vehicle and Occupant behavior during Side Impact at Different Impact Locations and Angles (측면 충돌 시 차량의 충돌 위치 및 충돌 각도에 따른 차량 및 승객 거동)

  • Junsuk Bae;Ho Kim;Young Myoung So
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.2
    • /
    • pp.34-43
    • /
    • 2024
  • As the autonomous vehicle is to come to the commercial market, passive safety of the vehicles becomes ever more important, since more responsibility of the car crash accidents will be imposed on the car makers. To cope with such a requirements, comprehensive studies are under progress in car OEM's as well as relevant institutes. In this study FE models of two identical family sedans are utilized to investigate the effect of crash parameters like crash impact locations, and impact angle. Relationship between structural behavior of the car and the dummy injury measures is studied.

Development of a Finite Element Model for Frontal Crash Analysis of a Large-Sized Truck (대형트럭의 정면 충돌 특성해석을 위한 유한요소모델의 개발)

  • Kim, Hak-Duck;Song, Ju-Hyun;Oh, Chae-Youn
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.489-494
    • /
    • 2001
  • This paper develops a finite element model for frontal crash analysis of a large-sized truck. It is composed of 220 parts, 70,041 nodes and 69,073 elements. This paper explains only major parts' models in detail such as frame, cab, floor, and bumper which affect on crash analysis a lot. In order to prevent penetration not only at a part itself but also between parts, all contact areas are defined using type-36, self-impact type. The developed model's reliability is validated by comparing simulation and crash test results. The results used for model validation are vehicle pulses at B-pillar, and frame and deformation of frame and cab. The frontal crash simulation is performed with the same conditions as crash test. And, it is performed using PAM-CRASH installed in super-computer SP2. The developed model whose reliability is verified may be used as a base to develop a finite element model for occupant behavior and injury coefficient analysis.

  • PDF

Development of a Crash Cushion Using the Frictional and Inertial Energy by Computer Simulation (컴퓨터 시뮬레이션에 의한 관성과 마찰 에너지를 이용하는 충격흡수시설의 개발)

  • Kim, Dong-Seong;Kim, Kee-Dong;Ko, Man-Gi;Kim, Kwang-Ju
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.23-30
    • /
    • 2009
  • Crash cushions are protective devices that prevent errant vehicles from impacting on fixed objects. This function is accomplished by gradually decelerating a vehicle to a safe stop in a relatively short distance. Commonly used crash cushions generally employ one of two concepts to accomplish this function. The first concept involves the absorption of the kinetic energy of a moving vehicle by crushable or plastically deformable materials and the other one involves the transfer of the momentum of a moving vehicle to an expendable mass of material located in the vehicle's path. Crash cushions using the first concept are generally referred to as compression crash cushions and crash cushions using the other concept are generally referred to as inertial crash cushion. The objective of this research is the development of a compression-type crash cushion by employing the two concepts simultaneously. To minimize the number of full-scale crash tests for the development of the crash cushion, preliminary design guide considering inertial and frictional energy absorption was constructed and computer simulation was performed. LS-DYNA program, which is most widely used to analyze roadside safety features, was used for the computer simulation. The developed crash cushion satisfied the safety evaluation criteria for various impact conditions of CC2 performance level in the Korean design guide.

An In-depth Analysis of Head-on Collision Accidents for Frontal Crash Tests of Automated Driving Vehicles (자율주행자동차 정면충돌평가방안 마련을 위한 국내 정면충돌사고 심층분석 연구)

  • Yohan Park;Wonpil Park;Seungki Kim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.4
    • /
    • pp.88-94
    • /
    • 2023
  • The seating postures of passengers in the automated driving vehicle are possible in atypical forms such as rear-facing and lying down. It is necessary to improve devices such as airbags and seat belts to protect occupants from injury in accidents of the automated driving vehicle, and collision safety evaluation tests must be newly developed. The purpose of this study is to define representative types of head-on collision accidents to develop collision standards for autonomous vehicles that take into account changes in driving behavior and occupants' postures. 150 frontal collision cases remained by filtering (accident videos, images, AIS 2+, passenger car, etc…) and random sampling from approximately 320,000 accidents claimed by a major insurance company over the past 5 years. The most frequent accident type is a head-on collision between a vehicle going straight and a vehicle turning left from the opposite side, accounting for 54.7% of all accidents, and most of these accidents occur in permissive left turns. The next most common frontal collision is the center-lane violation by drowsy driving and careless driving, accounting for 21.3% of the total. For the two types above, data such as vehicle speed, contact point/area, and PDOF at the moment of impact are obtained through accident reconstruction using PC-Crash. As a result, two types of autonomous vehicle crash safety test scenarios are proposed: (1) a frontal oblique collision test based on the accident types between a straight vehicle and a left-turning vehicle, and (2) a small overlap collision test based on the head-on accidents of center-lane violation.

Compatibility for Proposed R.94 PDB Test (PDB 시험에 대한 충돌 상호 안전성)

  • Jang, Eun-Ji;Kim, Joseph;Beom, Hyen-Kyun;Kwon, Sung-Eun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.149-155
    • /
    • 2010
  • Currently various safety tests are being performed in many countries with growing interest in vehicle safety. However the vehicles which have good safety performance in these tests could not secure the good performance in real car to car accident. So new test protocol using progressive deformable barrier (PDB) was proposed by EEVC in Europe, NHTSA in USA and some vehicle manufacturers, etc. The target of PDB test is to control partner protection in addition to self-protection on the same test. The proposal is to update current ECE R.94 frontal ODB test. So barrier, impact speed, overlap are changed to avoid bottoming-out in the test configuration. In this paper 3 different tests (R.94, EuroNCAP and PDB test) were carried out using current production vehicles with same structure. The results of these tests were compared to understand PDB test. As a result PDB test shows the highest vehicle deceleration and dummy injury because PDB offers a progressive increase in stiffness in depth and height. However vehicle intrusion was affected with rather test velocity than stiffness of deformable barrier. PDB deformation data is used for partner protection assessment using PDB software and it shows that the test vehicle is rather not aggressive.