• Title/Summary/Keyword: Vehicle Wheel

Search Result 1,002, Processing Time 0.018 seconds

The Mechanical Properties of SMA Concrete Mixture Using Steel Slag Aggregate (제철 슬래그 골재를 이용한 SMA 혼합물의 역학적 특성)

  • Kim, Hyeok-Jung;Na, Il-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.109-116
    • /
    • 2021
  • In order to replace mineral aggregate used as road pavement materials with steel slag aggregate, this present study evaluated mechanical properties of SMA Concrete mixtures using steel slag aggregate as oxidized slag from electric furnace in iron works. The variables of this experiment are the aggregate type of mineral and steel slag and the sieve sized of 10mm and 13mm. The physical properties inclu ding the specific gravity and absorption rate etc. of the slag aggregate mixtu res satisfied the KS standard as asphalt mixtu re. As a resu lt of evalu ating the mechanical properties of the asphalt mixtures, the optimum asphalt content of the slag aggregate mixtures were lower than that of the mineral aggregate mixtures, but other quality standards were all satisfied. In the deformation strength evaluation, the slag aggregate mixtures were measu red slightly higher than that of the mineral aggregate mixtu res, and the dynamic stability test satisfied the 2,000pass/mm standard value in all specimens. And, the moduli of resilient of the slag aggregate mixtures showed an improved value compared with the mineral aggregate mixtures. Therefore, as the resilient rate of the slag aggregate mixtures improved, it is speculated that there will be an effect of improving public performance according to the repeated traffic load of the vehicle.

Measurement and Discrimination Method for the Evaluation of Aero-Pulsation Noise Generated by the Turbocharger System (터보차저의 공기맥동음 평가를 위한 측정 및 판별법)

  • Kim, Jae-Heon;Lee, Jong-Kyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.7
    • /
    • pp.361-365
    • /
    • 2007
  • Aero-pulsation noise, generally caused by geometric asymmetry of a rotating device, is one of considerable sources of annoyance in passenger cars using the turbocharged diesel engine. Main source of this noise is the compressor wheel in the turbocharger system, and can be reduced by after-treatment devices such as silencers, but which may increase the manufacturing cost. More effective solution is to improve the geometric symmetry over all, or to control the quality of components by sorting out inferior ones. The latter is more simple and reasonable than the former in view of manufacturing. Thus, an appropriate discrimination method should be needed to evaluate aero-pulsation noise level at the production line. In this paper, we introduce the accurate method which can measure the noise level of aero-pulsation and also present its evaluation criteria. Besides verifying the reliability of a measurement system - a rig test system-, we analyze the correlation between the results from rig tests and those from vehicle tests. The gage R&R method is carried out to check the repeatability of measurements over 25 samples. From the result, we propose the standard specification which can discriminate inferior products from superior ones on the basis of aero-pulsation noise level.