• Title/Summary/Keyword: Vehicle Suspension

Search Result 704, Processing Time 0.033 seconds

The Nonlinear Simulation on the Selection of Suitable Suspension Considering Human Vibration (인체 진동을 고려한 최적 현가장치의 선정에 관한 비선형 모의실험)

  • 김진기;홍동표;최만용
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.247-253
    • /
    • 2000
  • The evaluation of the ride quality had been performed by the subjective method before ISO2631(International Organization for Stadard 2631) and BS6841(British Standard 6841) was precented, but many research programs have been performed by the objective method after that. On this study, the ride quality was evaluated related with the objective method which considered the vibration which the human body feels on the driver's seat while driving on the road. In particular, we made the shock absorber nonlinear model and also selected the suitable shock absorber in the part of the vibration which the human body feels into the simulation. The shock absorber of suspension was dealt with 3 cases respectively with the front wheel and rear wheel. The vibration of the car driving on the road can be transferred to the wheel, the suspension, the vehicle body, the seat and the human body. The signal which was gained from the seat(hip) and the floor(foot) of the human body was changed to the vibration signal which the human body felt through using the frequency weighting function. And then the performance of the shock absorber was calculated through the statistic processing.

  • PDF

The Study on noise Analysis of Bush on Suspension System (현가계 부쉬 이상소음 분식에 관한 연구)

  • Bae, Chul-Yong;Lee, Dong-Won;Kim, Chan-Jung;Lee, Bong-Hyun;Na, Byung-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.69-74
    • /
    • 2006
  • It is known that the various noise sources which are engine, transmission, tire, intake system, etc exist at vehicle driving status. Specially noises which cannot be expected by a driver induce unpleasantness to all passengers. These noises are difficult to distinguish noise sources or specifications because of too many vehicle parts. Therefore in this paper, study on abnormal noise of bush on suspension system is performed by the measurement and analysis of the noises of bushings that are generated artificially. The measured noises are analyzed by two points-view of spectrum and sound quality. Finally, it is shown that the noise sources of bushings on the suspension system which are the pillow ball joint bush of a control arm and the rubber bush of a lower arm could be distinguished by the spectrum distribution and a index value based on tonality.

  • PDF

Efficient Optimization of the Suspension Characteristics Using Response Surface Model for Korean High Speed Train (반응표면모델을 이용한 한국형 고속전철 현가장치의 효율적인 최적설계)

  • Park, C.K.;Kim, Y.G.;Bae, D.S.;Park, T.W.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.6
    • /
    • pp.461-468
    • /
    • 2002
  • Computer simulation is essential to design the suspension elements of railway vehicle. By computer simulation, engineers can assess the feasibility of the given design factors and change them to get a better design. But if one wishes to perform complex analysis on the simulation, such as railway vehicle dynamic, the computational time can become overwhelming. Therefore, many researchers have used a surrogate model that has a regression model performed on a data sampling of the simulation. In general, metamodels(surrogate model) take the form y($\chi$)=f($\chi$)+$\varepsilon$, where y($\chi$) is the true output, f($\chi$) is the metamodel output, and is the error. In this paper, a second order polynomial equation is used as the RSM(response surface model) for high speed train that have twenty-nine design variables and forty-six responses. After the RSM is constructed, multi-objective optimal solutions are achieved by using a nonlinear programming method called VMM(variable matric method) This paper shows that the RSM is a very efficient model to solve the complex optimization problem.

Optimization of Design Variables of Suspension for Train using Neural Network Model (신경회로망 모델을 이용한 철도 현가장치 설계변수 최적화)

  • 김영국;박찬경;황희수;박태원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1086-1092
    • /
    • 2002
  • Computer simulation is essential to design the suspension elements of railway vehicle. By computer simulation, engineers can assess the feasibility of a given design factors and change them to get a better design. But if one wishes to perform complex analysis on the simulation, such as railway vehicle dynamic, the computational time can become overwhelming. Therefore, many researchers have used a mega model that has a regression model made by sampling data through simulation. In this paper, the neural network is used a mega model that have twenty-nine design variables and forty-six responses. After this mega model is constructed, multi-objective optimal solutions are achieved by using the differential evolution. This paper shows that this optimization method using the neural network and the differential evolution is a very efficient tool to solve the complex optimization problem.

  • PDF

Study of the dynamic behavior of porous functionally graded suspension structural systems using finite elements method

  • Ayman E., Nabawy;Ayman M.M., Abdelhaleem;Soliman. S., Alieldin;Alaa A., Abdelrahman
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.697-713
    • /
    • 2022
  • In the context of the finite elements method, the dynamic behavior of porous functionally graded double wishbone vehicle suspension structural system incorporating joints flexibility constraints under road bump excitation is studied and analyzed. The functionally graded material properties distribution through the thickness direction is simulated by the power law including the porosity effect. To explore the porosity effects, both classical and adopted porosity models are considered based on even porosity distribution pattern. The dynamic equations of motion are derived based on the Hamiltonian principle. Closed forms of the inertia and material stiffness components are derived. Based on the plane frame isoparametric Timoshenko beam element, the dynamic finite elements equations are developed incorporating joint flexibilities constraints. The Newmark's implicit direct integration methodology is utilized to obtain the transient vibration time response under road bump excitation. The presented procedure is validated by comparing the computational model results with the available numerical solutions and an excellent agreement is observed. Obtained results show that the decrease of porosity percentage and material graduation tends to decrease the deflection as well as the resulting stresses of the control arms thus improving the dynamic performance and increasing the service lifetime of the control arms.

Performance Evaluation of a Quarter Car Suspension System Installed with MR Damper Featuring Bypass Flow Holes in Piston (피스톤 바이패스 유로가 있는 MR 댐퍼 장착 1/4 차량 현가시스템의 성능평가)

  • Kim, Wan Ho;Hwang, Yong Hoon;Park, Jhin Ha;Shin, Cheol-Soo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.65-71
    • /
    • 2017
  • This work presents a comparative work on the ride comfort of a quarter car suspension system between two different magneto-rheological (MR) dampers; one is conventional type without bypass hole and the other is featured by several bypass holes in the piston. As a first step, two different MR dampers are designed on the basis of the governing equation and manufactured with same geometric dimensions except the bypass holes. After investigating the field-dependent damping properties, two dampers are installed to the quarter car suspension system. The suspension model is then derived and a sky-hook controller is implemented to identify vibration control performance under random road. It is shown that the suspension system with MR damper featured by the bypass holes can provide much better ride quality than the case without the bypass holes. This is validated via experimental implementation.

Mathematical Model for Power Transmission - Vehicle System Coupling Analysis (동력전달계와 차량계의 연성 해석을 위한 수학적 모델의 개발)

  • Kong, Jin-Hyung;Park, Jin-Ho;Jo, Han-Sang;Park, Yeong-Il;Lee, Jang-Moo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.696-701
    • /
    • 2000
  • In this study, a mathematical model fur analyzing the shift characteristics is proposed. The proposed model comprises power transmission system and vehicle system, which are coupled. And On-road car test is carried out in order to extract model parameters. Tile model is composed of a detailed powertrain, an engine/AT housing, a simplified suspension system. tires and a vehicle body model. On the test, the vehicle accelerations and pitch ratio are measured by using accelerometers and gyro sensor. The other data, for example speeds, a throttle position and a brake signal, are taken from sensors which already exist in the vehicle. Using natural frequency and characteristic equation, vehicle model parameters are extracted from experimental data.

  • PDF

A new bridge-vehicle system part I: Formulation and validation

  • Chan, Tommy H.T.;Yu, Ling;Yung, T.H.;Chan, Jeffrey H.F.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.1
    • /
    • pp.1-19
    • /
    • 2003
  • This paper presents the formulation of a new bridge-vehicle system with validation using the field data. Both pitching and twisting modes of the vehicle are considered in the contribution of the dynamic effects in the bridge responses. A heavy vehicle was hired as a control vehicle with known axle weight, axle spacing and spring coefficients. The measured responses were generated from the control vehicle running at a particular speed at a test span at Ma Tau Wai Flyover. The measured responses were acquired using strain gauges installed beneath the girder beams of the test bridge. The simulated responses were generated using BRVEAN that is a self-developed program based on the proposed bridge-vehicle system. The validation shows that the bridge model is valid for representing the test bridge and the governing equations are valid for representing the motion of moving vehicles.

A Study on Roll Characteristics of Railway Vehicle (철도차량 롤 특성에 대한 고찰)

  • 김필환
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.512-521
    • /
    • 1998
  • The roll characteristic of railway vehicle is an important factor that affects the roll-over of vehicle and lateral ride comfort of passenger. Generally the roll characteristics of railway vehicle is defined by the term of roll-coefficient, s, which represents the ratio of incline or carbody to that of rail-cant. The limit values of roll coefficient recommended in UIC Bre 0.4 for coach without pantograph and 0.15 for vehicle with pantograph. The roll coefficient can be calculated by VAMPIRE that is the well-known commercial software for analysis of dynamic behavior of railway vehicle. The value of roll coefficient is effected by height of gravity center of carbody, stiffness of primary and secondary suspension and etc. The calculated roll-coefficient for electric locomotive and passenger coach is 0.12 and 0.77 respectively, The additional equipment such as anti-roll bar is considered in order to decrease roll-coefficient of passenger coach. In relation to roll characteristics, the analysis for roll-over due to wind is a1so performed. The results show that roll-characteristics affect the roll-over of vehicle.

  • PDF

A Study on the Analysis of Curving Performance of Railway Vehicle (열차의 곡선주행능 해석에 관한 연구)

  • Kim, Do-Jung;Park, Sam-Jin
    • 한국기계연구소 소보
    • /
    • s.14
    • /
    • pp.101-110
    • /
    • 1985
  • Kyung-p-1 main line is characterized by its curves radii of which are considerably small. It is essential for running time reduction of train to improve capabilities of curve negotiation. This improvement can be achieved by designing a bogie with flexible suspension system. The effect of the improvement is mainly concerned in the primary yaw stiffness of bogie suspension. This paper gives a linear analysis for the motion of railway vehicle on curved track and gives also computer simulation results for Semaul Train. The results introduce a conclusion that the primary yaw stiffness of Semaul train is too rigid to be self-steering on Kyung-pu main line curves.

  • PDF