• 제목/요약/키워드: Vehicle Structure Vibration

검색결과 273건 처리시간 0.028초

타이어 공명 소음(Tire Cavity Resonance Noise) 저감에 관한 연구 (The Study of Reduction Technologies of Tire Cavity Resonance Noise)

  • 방명제;최승일;추권철;이홍진;손창억
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.596-599
    • /
    • 2008
  • Traditionally, tire made a role of function, which is supporting vehicle load, making brake, transferring traction, etc. But tire is a part of vehicle design, nowadays. In accordance with this market trend, customers need a wide tread design tire (i.e. low series tire). Generally low Series Tire means stiffer than general tire. That brings out increasing road noise. (Especially tire cavity resonance noise) Tire noise is divided in structure home noise and air borne noise. Tire cavity resonance noise (structure home noise) come from vibration between tire and vehicle. In the study, we investigated that tire cavity resonance noise is affected by stiffness of tread and sidewall.

  • PDF

Optimal Stiffness Design of Joint Structures of a Vehicle for Vibration

  • Lee, Sang-Beom
    • The Journal of the Acoustical Society of Korea
    • /
    • 제17권1E호
    • /
    • pp.66-69
    • /
    • 1998
  • Idle shake vibration characteristics of a vehicle are mainly influenced not only by the stiffnesses of the beam type structures such as pillars and rockers, but also by the stiffnesses of the joint structures, at which several beam structures are jointed together. In the early design stage of the car body structure a simple FE model has been used, in which joints are modeled as linear springs to represent the stiffnesses of the joint structures. In this paper a new modeling technique for the joint structure is presented using an equivalent beam, instead of using a spring. The modeling technique proposed is utilized to design optimal joint structures that meet the required vibration performance of the total vehicle structure.

  • PDF

주행거리 연장형 전기자동차의 차량제어 알고리즘 설계 및 운전성 확보를 위한 엔진 발전시스템 제어 (Design of Vehicle Control Algorithm and Engine-generator Control for Drivability of Range-extended Electric Vehicle)

  • 박용국
    • 한국자동차공학회논문집
    • /
    • 제24권6호
    • /
    • pp.649-659
    • /
    • 2016
  • This paper describes control algorithm and control structure of vehicle control unit for range-extended electric vehicle equipped with engine-generator system, and specially presents methods which determine optimal operating points and decreases a vibration or a shock for operating the engine-generating system. The vehicle control algorithm is consisted of several parts which are sequence control, calculation of wheel demand torque, determination of operating points, and management of operating points and so vehicle controller has be made possible to efficiently manage calibration parameters. The control algorithm is evaluated by driving test modes, launching performance and operating engine-generator system and so on. In conclusion, this paper present methods for extending a mileage, improving a launching performance and reducing vibration or shock when the engine-generating system is starting or is stopping.

차량의 임팩트하쉬니스 성능 예측 연구 (A Study on the Prediction of the Impact Harshness for a Passenger Vehicle)

  • 김진홍;정일수;김명규;심정수;이상우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.613-616
    • /
    • 2012
  • A multi body simulation (MBS) model is developed for predicting the impact harshness of the vehicle. Impact harshness is the vehicle performance to evaluate the impulsive vibration behavior during driving over an obstacle of the road. Thus, the approach is simulated on the time domain for considering the transient behavior of the vehicle. The validity of vehicle component modeling of bushes, dampers and structure flexibilities is verified. The simulations are compared with the test results in both of vertical and longitudinal directions. In particular, the vertical vibration of the vehicle is significantly affected by the body flexibility. Through the sensitivity analysis, main factors for the impact harshness performance are investigated.

  • PDF

Structural noise mitigation for viaduct box girder using acoustic modal contribution analysis

  • Liu, Linya;Qin, Jialiang;Zhou, Yun-Lai;Xi, Rui;Peng, Siyuan
    • Structural Engineering and Mechanics
    • /
    • 제72권4호
    • /
    • pp.421-432
    • /
    • 2019
  • In high-speed railway (HSR) system, the structure-borne noise inside viaduct at low frequency has been extensively investigated for its mitigation as a research hotspot owing to its harm to the nearby residents. This study proposed a novel acoustic optimization method for declining the structure-borne noise in viaduct-like structures by separating the acoustic contribution of each structural component in the measured acoustic field. The structural vibration and related acoustic sourcing, propagation, and radiation characteristics for the viaduct box girder under passing vehicle loading are studied by incorporating Finite Element Method (FEM) with Modal Acoustic Vector (MAV) analysis. Based on the Modal Acoustic Transfer Vector (MATV), the structural vibration mode that contributes maximum to the structure-borne noise shall be hereinafter filtered for the acoustic radiation. With vibration mode shapes, the locations of maximum amplitudes for being ribbed to mitigate the structure-borne noise are then obtained, and the structure-borne noise mitigation performance shall be eventually analyzed regarding to the ribbing conduction. The results demonstrate that the structural vibration and structure-borne noise of the viaduct box girder mainly occupy both in the range within 100 Hz, and the dominant frequency bands both are [31.5, 80] Hz. The peak frequency for the structure-borne noise of the viaduct box girder is mainly caused by $16^{th}$ and $62^{th}$ vibration modes; these two mode shapes mainly reflect the local vibration of the wing plate and top plate. By introducing web plate at the maximum amplitude of main mode shapes that contribute most to the acoustic modal contribution factors, the acoustic pressure peaks at the field-testing points are hereinafter obviously declined, this implies that the structure-borne noise mitigation performance is relatively promising for the viaduct.

기동장비용 지향구조물의 진동 감소 상태선정 연구 (A Study on Vibration Reduction Timing Selection in the Mobile Pointing System)

  • 유진호;이동주
    • 한국공작기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.112-119
    • /
    • 2007
  • In order to predict vibration trends occurred during vehicle drive, acceleration data was processed by using data processing algorithm with moving average and Hilbert transform. Specific mode constants of acceleration were obtained under various disturbance. Vehicle velocity, road condition, property of pointing structure were considered as factors which make change of vibration trend in vehicle dynamics. Results of signal processing were compared and analysed. Advanced performance of the timing selection algorithm from this study was verified by using simple equipment comparing with the deflection measurement laser system(Muzzle Reference System).

수송체 구조물의 진동특성에 관한 설계민감도 해석 (Design Sensitivity Analysis for the Vibration Characteristics of Vehicle Structure)

  • 이재환
    • 전산구조공학
    • /
    • 제7권1호
    • /
    • pp.91-98
    • /
    • 1994
  • 선박, 자동차, 항공기등 수송체 구조해석에 유한요소법이 사용됨에 따라 초기 설계 후 대형 복합구조물의 해석이 ANSYS, NASTRA등의 범용 유한요소 코드에 의해 수행되고 있다. 설계변경을 시도할 때 설계자의 경험과 인지만으로 대형 구조물의 성능변경을 예측하기는 어렵다. 비록 대형 컴퓨터의 사용으로 구조 재해석이 용이하나 정량적 및 이론적 설계수정방향 없이는 인력과 계산시간 소모를 초래하고 때로는 시간 제약으로 충분한 재해석을 못할 수가 있다. 이때 긴요하게 사용될 수 있는 정보는 민감도로서 설계변수 변화에 대한 구조응답 변화를 수치적으로 나타내므로 설계변경에 도움을 줄 수 있다. 본 논문에서 계산된 정확한 민감도는 선체데크구조와 수송체구조물 프레임 강성도를 설계 변수로 하였으며 구조물 진동저감 설계에 사용될 수 있다. 즉 유한요소법에 의한 구조 재해석에 의하지 않고 민감도 값으로 구조 진동변위 증감을 예측할 수 있음이 예제로 보여지고 있다.

  • PDF

소형 위성 발사체 2단부 모드 시험 (Modal Test of the 2nd Stage of Small Launch Vehicle)

  • 서상현;정호경;윤세현;박순홍;장영순
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.258-261
    • /
    • 2006
  • The structure of small launch vehicle can be divided into engine section and payload section. This paper introduces modal test of the payload section of small launch vehicle which is composed to satellite, PLA (Payload Adapter), VEB (Vehicle Equipment Bay), KMS (Kick Motor Support) and KM (Kick Motor). From this test, dynamic properties of the 2nd stage structure of small launch vehicle can be obtained. In this test, to simulate free-free boundary condition, test object was hung by 4 bungee cords and excited by using impact hammer Modal test data are analyzed by using TDAS(Test Data Analysis Software). As the result, modal parameters and mode shapes below 100Hz of the 2nd stage of small launch vehicle were identified.

  • PDF

자동차용 CD/DVD 데크의 진동 저감 및 성능 향상에 관한 연구 (A Study on the Vibration Reduction and Performance Improvement of the CD/DVD for the Vehicles)

  • 박영필;정두한;정진태
    • 대한기계학회논문집A
    • /
    • 제29권7호
    • /
    • pp.1035-1041
    • /
    • 2005
  • Dynamic characteristics of CD/DVD deck fur vehicle are analyzed in this paper. Generally CD/DVD deck for vehicle is used from inferior environment with the vibration of the vehicle, shock of outside and so on. Therefore it must have the structure which is stabilized from the vibration to prevent read error. For this purpose, vibration characteristic of the deck for vehicle should be identified. To analyze characteristic of the deck system, we perform the signal analysis and modal testing using the EFT analyzer. Also we change the design factor degrading the performance of the deck system and verify the efficiency improvement using the acceleration measurement occurring to the sound discontinuation.

자동차 하부 공력소음 파악 기술의 개발 (Development of Wind Noise Source Identification Technique for Vehicle Underbody)

  • 이강덕;정승균
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.353-356
    • /
    • 2003
  • Acoustic holography is adopted in identifying the noise sources of a vehicle's underbody. Wind noise from a vehicle's underbody accounts for a large portion of the overall noise level due to the complex flow structure. Current study presents the development process of acoustic holography in the vehicle underbody, and discusses the results obtained using the method. Difficulties associated with using acoustic holography as well as the implication of the results regarding future noise reduction possibilities are discussed.

  • PDF