• Title/Summary/Keyword: Vehicle Speed and Distance

Search Result 311, Processing Time 0.026 seconds

A Study on Evaluation Method of ACC Test Considering Domestic Road Environment (국내도로 환경을 고려한 ACC 시험평가 방법에 관한 연구)

  • Kim, BongJu;Lee, SeonBong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.4
    • /
    • pp.38-47
    • /
    • 2017
  • With automobiles sharply increasing worldwide, we are faced with serious social problems such as traffic accidents, traffic jams, environmental pollution, and economic inefficiency. In response, research on ITS is promoted mainly by regions with advanced automotive industry such as the US, Europe, and Japan. While Korea is working to get ahead to take global market through developing and turning into global standards systems related to ASV(Advanced Safety Vehicle), the country is not excellently prepared for such projects. The purpose of ACC is to control the vehicle's longitudinal speed and distance and minimize driver workload. Such a system should be useful in preventing accidents, as it reduces driver workload in the 21st-century world of telematics created by the development of automobile culture industry. In this light, the thesis presents a method to test and evaluate ACC system and a mathematical method to assess distance. Furthermore, for the proposed test and evaluation, theoretical values are tested with vehicle test and a database is acquired, by using vehicles equipped with an ACC system. We proposed the scenarios suitable for the domestic environment and conducted the actual road test. Theoretical evaluation criteria for developing ACC system may be employed and scenario-specific evaluation methods may find their useful application through testing the formula proposed by comparing the database and the mathematical method. and, many companies are expected to utilize the scenario in the developing stage of ACC, and be able to employ as a verification method by harnessing theoretical formula before a road test.

WAVE System Performance for Platooning Vehicle Service Requirements Under Highway Environments (고속도로 환경에서 군집주행 서비스 요구사항에 대한 WAVE 통신시스템 성능 분석)

  • Song, Yoo-seung;Choi, Hyun Kyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.1
    • /
    • pp.147-156
    • /
    • 2017
  • This paper analyzes the performance limit of WAVE system for the platooning service requirements which is referred from the de facto standards. The performance of the packet error rate and mean delay as key parameters in the wireless communication systems should be satisfied to provide safety to the platooning vehicles. The test scenarios are conducted by considering the following vehicle groups: platooning vehicles, vehicles within a hop distance and vehicles within two hop distance( called hidden node vehicles). The models of packet error rate and delay deals with the topology of aforementioned vehicle groups, vehicle speed and communication range. The numerical results are obtained in terms of packet size, packet arrival rate and data transmission rate. Finally, this paper suggests the robust range of packet error rate and delay for the WAVE system to provide the platooning vehicle service.

The Characteristics of Driving Parameters and CO2 Emissions of Light-Duty Vehicles in Real-Driving Conditions at Urban Area in Seoul (서울 도심의 실제 도로 주행 조건에서 소형자동차의 주행인자와 CO2 배출 특성에 관한 연구)

  • Park, Junhong;Lee, Jongtae;Kim, Sunmoon;Kim, Jeongsoo;Ahn, Keunhwan
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.359-369
    • /
    • 2013
  • In this paper, correlations between driving parameters and $CO_2$ of light-duty vehicles have been analyzed. Three test vehicles equipped with PEMS (Portable Emission Measurement System) have been driven in real-road in urban areas of Seoul. Averaged vehicle speed, RPA(Relative Positive Acceleration) and stop ratio have been selected as main driving parameters. The analysis have been conducted in interrupted and uninterrupted road types. Averaged values in various driving conditions have been calculated with distance based moving averaging window method. The multiple linear regression method have been applied to account for correlation between driving parameters and $CO_2$ emissions. This approach has shown statistically that $CO_2$ emission per distance (g/km) have tendencies to be increased as decreased averaged vehicle speed and increased RPA and stop ratio. Compared with uninterrupted traffic, interrupted traffic have shown the lower vehicle speed and the higher RPA and stop ratio. These characteristics of driving parameters in interrupted traffic should cause the higher $CO_2$ emission per distance.

An Fuzzy-based Risk Reasoning Driving Strategy on VANET

  • Lee, Byung-Kwan;Jeong, Yi-Na;Jeong, Eun-Hee
    • Journal of Internet Computing and Services
    • /
    • v.16 no.6
    • /
    • pp.57-67
    • /
    • 2015
  • This paper proposes an Fuzzy-based Risk Reasoning Driving Strategy on VANET. Its first reasoning phase consists of a WC_risk reasoning that reasons the risk by using limited road factors such as current weather, density, accident, and construction, a DR_risk reasoning that reasons the risk by combining the driving resistance with the weight value suitable for the environment of highways and national roads, a DS_risk reasoning that judges the collision risk by using the travel direction, speed. and distance of vehicles and pedestrians, and a Total_risk reasoning that computes a final risk by using the three above-mentioned reasoning. Its second speed reduction proposal phase decides the reduction ratio according to the result of Total_risk and the reduction ratio by comparing the regulation speed of road to current vehicle's speed. Its third risk notification phase works in case current driving speed exceeds regulation speed or in case the Total_risk is higher than AV(Average Value). The Risk Notification Phase informs rear vehicles or pedestrians around of a risk according to drivers's response. If drivers use a brake according to the proposed speed reduction, the precedent vehicles transfers Risk Notification Messages to rear vehicles. If they don't use a brake, a current driving vehicle transfers a Risk Message to pedestrians. Therefore, this paper not only prevents collision accident beforehand by reasoning the risk happening to pedestrians and vehicles but also decreases the loss of various resources by reducing traffic jam.

Vehicle-related Fine Particulate Air Pollution in Seoul, Korea

  • Bae, Gwi-Nam;Lee, Seung-Bok;Park, Su-Mi
    • Asian Journal of Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Vehicle exhaust is a dominant source of air pollutants in urban areas. Since people are easily exposed to vehicle exhaust particles while driving a car and/or traveling via public transportation, air pollution near traffic has been extensively studied in developed countries. In this paper, investigations on vehicle-related fine particulate air pollution at roadsides and on roads in Seoul, Korea were reviewed to understand air pollution near traffic. Comparison of $PM_{10}$ concentrations in Seoul showed that roadside air is more contaminated than urban air, implying that exposure levels near vehicular emissions are more critical to sensitive persons. Concentrations of ultrafine particles and BC (black carbon) at roadsides of Seoul fluctuate highly for short durations, responding to traffic situations. Diurnal variations of ultrafine particles and BC concentrations at roadsides seem to be affected by traffic volume, mixing layer height, and wind speed. Concentrations of ultrafine particles and BC decrease as distance from the road increases due to dilution during transport. On-road air pollution seems to be more severe than roadside air pollution in Seoul. Since nearby traffic air pollution has not been well understood in Seoul, further studies including various vehicular air pollutants and representative locations are needed.

[Retracted]Design and Implementation of Optimized Profile through analysis of Navigation Data Analysis of Unmanned Aerial Vehicle ([논문철회]무인비행기의 항행 데이터 분석을 통한 최적화된 프로파일 설계 및 구현)

  • Lee, Won Jin
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.237-246
    • /
    • 2022
  • Among the technologies of the 4th industrial revolution, drones that have grown rapidly and are being used in various industries can be operated by the pilot directly or can be operated automatically through programming. In order to be controlled by a pilot or to operate automatically, it is essential to predict and analyze the optimal path for the drone to move without obstacles. In this paper, after securing and analyzing the pilot training dataset through the unmanned aerial vehicle piloting training platform designed through prior research, the profile of the dataset that should be preceded to search and derive the optimal route of the unmanned aerial vehicle was designed. The drone pilot training data includes the speed, movement distance, and angle of the drone, and the data set is visualized to unify the properties showing the same pattern into one and preprocess the properties showing the outliers. It is expected that the proposed big data-based profile can be used to predict and analyze the optimal movement path of an unmanned aerial vehicle.

Development of an Autonomous Worker-Following Transport Vehicle (I) - Manufacture and indoor experiment of the prototype vehicle - (농작업자 자동 추종 운반차 개발(I) - 시작기 제작 및 실내성능시험 -)

  • 권기영;정성림;강창호;손재룡;한길수;정석현;장익주
    • Journal of Biosystems Engineering
    • /
    • v.27 no.5
    • /
    • pp.409-416
    • /
    • 2002
  • This study was conducted to develop a vehicle, leading or following a worker at a certain distance to assist laborious transporting works in greenhouses. A prototype vehicle, which consisted of the rear driving, the front steering and the console units, was designed and tested in the ideal indoor conditions. Results of this study were summarized as following: 1. The driving unit was designed to travel at the speed ranges of 0.3∼0.8 m/sec depending on the operating modes with a maximum payload of 100 kg. 2. The console unit consisted of a main-board including a 80C196KC microprocessor and peripheral devices, a power-board and safety interlock. Worker-leading, and following modes were available in automatic and manual modes. 3. Steering was achieved by turning the steering motor against the sensed direction. Proper steering angles for correcting travel direction were determined as 5 and 9 degrees when sensing cultivation beds and plants, respectively.

A Study on the Applicability of the Conventional TTX Propulsion System on the High-speed Propulsion System for a Deep-underground GTX

  • Park, Chan-Bae;Lee, Byung-Song;Lee, Ju
    • International Journal of Railway
    • /
    • v.3 no.2
    • /
    • pp.54-59
    • /
    • 2010
  • In order to develop the deep-underground GTX (Great Train eXpress) in domestic, the running performance analysis of the propulsion system by a variety of route condition must be carried out before studying the specification and the development of the high-speed propulsion system with inverter and traction motor. Then it is necessary to study the running resistance properties of the high-speed traction system for the variety of tunnel type and vehicle organization method at first. In addition, the properties of the power requirement of the traction motors needed to maintain the balanced speed of the high-speed traction system are next studied. We need to study properties of the emergency braking distance caused by the highest operation speed of the high-speed traction system and present the fundamental design technologies to develop the high-speed traction system for the deep-underground GTX. Finally, the paper analyzes the applicability of the conventional Korean Tilting Train eXpress (TTX) propulsion system on the high-speed propulsion system for the deep-underground GTX.

  • PDF

Dynamic Behavior Analysis of PSC Train Bridge Friction Bearings for Considering Next-generation High-speed Train (차세대 고속철의 증속을 고려한 PSC 철도교 마찰 교량받침의 동적 거동 해석)

  • Soon-Taek Oh;Seong-Tae Yi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.39-46
    • /
    • 2023
  • In this study, the dynamic behavior of friction bearings of PSC (Pre-Stressed Concrete) box train continuous bridge was numerically analyzed at 10 km/h intervals up to 600 km/h according to the increasing speed of the next-generation high-speed train. A frame model was generated targeting the 40-meter single-span and two-span continuous PSC box bridges in the Gyeongbu High-Speed Railway section. The interaction forces including the inertial mass vehicle model with 38 degrees of freedom and the irregularities of the bridge and track were considered. It was calculated the longitudinal displacement, cumulative sliding distance and displacement speed of the bridge bearings at each running speed so that compared with the dynamic behavior trend analysis of the bridge. In addition, long-term friction test standards were applied to evaluate the durability of friction plates.

Real time obstacle avoidance for autonomous mobile robot (이동 로봇의 실시간 충돌회피)

  • 권영도;이진수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.434-439
    • /
    • 1993
  • This paper present a sensor based obstacle avoidance method which is based on a VFH(Vector Field Histogram) method. The basic idea of obstacle avoidance is to find a minimum obstacle direction and distance. From the minimum sonar index and the target direction high level system determine steering angle of mobile robot. The sonar sensor system consists of 12 ultra sonic sensor, and each sensor have its direction and safety value. This method has advantage on calculation speed and small memory. This method is implemented on indoor autonomous vehicle'ALiVE-2'.

  • PDF