• Title/Summary/Keyword: Vehicle Simulation

Search Result 3,360, Processing Time 0.03 seconds

A Simulation Program for the Braking Characteristics of Tractor-Semitrailer Vehicle (Tractor-Semitrailer 차량의 제동특성 프로그램 개발)

  • 서명원;박윤기;권성진;양승환;박병철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.152-167
    • /
    • 2001
  • Recently safety systems for the commercial vehicle have been rapidly developed. However, we still have many problems in the vehicle stability and the braking performance. Especially, a commercial vehicle may meet a dangerous braking condition when the vehicle is lightly loaded or empty and when the road is wet or slippery. Under these conditions, the truck can spin out or the tractor can jackknife or the trailer can swing out. To design the air brake system for the commercial vehicle, since the air brake system has many design variables, there must have been intensive researches on a method how to prevent dynamic instability and how to maximize the vehicle deceleration. In this study, mathematical models about the tractor-semitrailer and the air brake system including an ABS controller have been constructed for computer simulation. Also, simple examples are applied to show the usefulness of the program. Designers can use this simulation program for understanding the braking characteristics such as trajectory, braking distance, longitudinal deceleration, lateral deceleration, and yaw rate on various road conditions.

  • PDF

Development of Throttle and Brake Controller for Autonomous Vehicle Simulation Environment (자율주행 시뮬레이션 환경을 위한 차량 구동 및 제동 제어기 개발)

  • Kwak, Jisub;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.1
    • /
    • pp.39-44
    • /
    • 2022
  • This paper presents a development of throttle and brake controller for autonomous vehicle simulation environment. Most of 3D simulator control autonomous vehicle by throttle and brake command. Therefore additional longitudinal controller is required to calculate pedal input from desired acceleration. The controller consists of two parts, feedback controller and feedforward controller. The feedback controller is designed to compensate error between the actual acceleration and desired acceleration calculated from autonomous driving algorithm. The feedforward controller is designed for fast response and the output is determined by the actual vehicle speed and desired acceleration. To verify the performance of the controller, simulations were conducted for various scenarios, and it was confirmed that the controller can successfully follow the target acceleration.

Development of a Dynamic Analysis Program for Tracked Vehicles (궤도차량을 위한 동특성 해석 프로그램 개발)

  • 최윤상;이영신
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.29-35
    • /
    • 2002
  • A simulation program for vehicle dynamic analysis was developed. The Cartesisn coordinate system was used for translational motion and the Euler angle system was used for rotational motion. A three dimensional multi-wheeled vehicle model and equations of motion were derived. Also static equilibrium analysis was added for initial vehicle condition setting. The program user can describe the exact characteristics of suspension spring force and damping force in the user subroutine. A wheel-ground contact model which represents geometrical effect was developed. Two cases of simulation for 16 D.O.F. vehicle model were conducted to validate the developed program by comparing the simulation results with the experimental data.

Optimum Design of Front Toe Angle Using Design of Experiment and Dynamic Simulation for Evaluation of Handling Performances (실험계획법을 이용한 전륜 토우각의 최적설계 및 조종 안정성능 평가 시뮬레이션)

  • 서권희;민한기;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.120-128
    • /
    • 2000
  • At the initial design stage of a new vehicle, the chassis layout has the most important influence on the overall vehicle performance. Most chassis designers have achieved the target performances by trial and error method as well as individual knowhow. Accordingly, a general procedure for determining the optimum location of suspension hard points with respect to the kinematic characteristics needs to be developed. In this paper, a method to optimize the toe angle in the double wishbone type front suspension of the four-wheel-drive vehicle is presented using the design of experiment, multibody dynamic simulation, and optimum design program. The handling performances of two full vehicle models having the initial and optimized toe angle are compared through the single lane change simulation. The sensitive design variables with respect to the kinematic characteristics are selected through the experimental design sensitivity analysis using the perturbation method. An object function is defined in terms of the toe angle among those kinematic characteristics. By the design of experiment and regression analysis, the regression model function of toe angle is obtained. The design variables which make the toe angle optimized ae extracted using the optimum design program DOT. The single lane change simulation and test of the full vehicle model are carried out to survey the handling performances of vehicle with toe angle optimized. The results of the single lane change simulation show that the optimized vehicle has the more improved understeer tendency than the initial vehicle.

  • PDF

Estimation of Vehicle Driving-Load with Application to Vehicle Intelligent Cruise Control

  • Kyongsu Yi;Lee, Sejin;Lee, Kyo-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.720-726
    • /
    • 2001
  • This paper describes a vehicle driving-load estimation method for application to vehicle Intelligent Cruise Control (ICC). Vehicle driving-load consists of aerodynamic force, rolling resistance, and gravitational force due to road slope and is unknown disturbance in a vehicle dynamic model. The vehicle driving-load has been estimated from engine and wheel speed measurements using a vehicle dynamic model a least square method. The estimated driving-load has been used in the adaptation of throttle/brake control law. The performance of the control law has been investigated via both simulation and vehicle tests. The simulation and test results show that the proposed control law can provide satisfactory vehicle-to-vehicle distance control performance for various driving situations.

  • PDF

Effect of Engine Friction on Vehicle Fuel Economy during Warm-up (웜업시 엔진 마찰이 차량 모드 연비에 미치는 영향)

  • Lim, Gun-Byoung;Wi, Hyo-Seong;Park, Jin-Il;Lee, Jong-Hwa;Park, Kyoung-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.109-114
    • /
    • 2008
  • An improvement of vehicle fuel economy is one of the most important topic in automotive engineering. Lots of engineers make efforts to achieve 1% of fuel economy improvement. Engine friction is an important factor influencing vehicle fuel economy. This paper focuses on effect of engine friction on vehicle fuel economy during warm-up. A computer simulation is one of the powerful tools in automotive engineering field. Recently Simulation is attempting to virtual experiment not using expensive instruments. It is possible to presuppose fuel economy by changing the characteristic of accessories using CRUISE(vehicle simulation software). In this paper, fuel consumption at each part of the vehicle is analyzed by both of experiment and simulation. The results of fuel economy analysis on experiment substitute for Cruise to calculate fuel economy. The simulation data such as engine speed, brake torque, shift pattern, vehicle speed, fuel consumption level is well correlated to experiment data. In this paper, the change of warm-up time, faster or slower, through simulation is performed. As a result of the fast warm-up, fuel economy is improved up to 1.7%.

DEVELOPMENT OF HARDWARE-IN-THE-LOOP SIMULATION SYSTEM AS A TESTBENCH FOR ESP UNIT

  • Lee, S.J.;Park, K.;Hwang, T.H.;Hwang, J.H.;Jung, Y.C.;Kim, Y.J.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.203-209
    • /
    • 2007
  • As the vehicle electronic control technology quickly grows and becomes more sophisticated, a more efficient means than the traditional in-vehicle driving test is required for the design, testing, and tuning of electronic control units (ECU). For this purpose, the hardware-in-the-loop simulation (HILS) scheme is very promising, since significant portions of actual driving test procedures can be replaced by HIL simulation. The HILS incorporates hardware components in the numerical simulation environment, and this yields results with better credibility than pure numerical simulations can offer. In this study, a HILS system has been developed for ESP (Electronic Stability Program) ECUs. The system consists of the hardware component, which that includes the hydraulic brake mechanism and an ESP ECU, the software component, which virtually implements vehicle dynamics with visualization, and the interface component, which links these two parts together. The validity of HIL simulation is largely contingent upon the accuracy of the vehicle model. To account for this, the HILS system in this research used the commercial software CarSim to generate a detailed full vehicle model, and its parameters were set by using design data, SPMD (Suspension Parameter Measurement Device) data, and data from actual vehicle tests. Using the developed HILS system, performance of a commercial ESP ECU was evaluated for a virtual vehicle under various driving conditions. This HILS system, with its reliability, will be used in various applications that include durability testing, benchmarking and comparison of commercial ECUs, and detection of fault and malfunction of ESP ECUs.

Comparative Analysis of Maximum Driving Range of Electric Vehicle and Internal Combustion Engine Vehicle (전기자동차 및 내연기관 자동차의 최대 주행 거리 비교 분석)

  • Kim, Jeongmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.105-112
    • /
    • 2013
  • In this paper, EV (Electric Vehicle) and ICE (Internal Combustion Engine) vehicle simulators are developed to compare maximum driving range of EV and ICE vehicle according to different driving patterns. And, simulations are performed for fourteen constant velocity cases (20, 30, 40, ${\ldots}$, 150 km/h) and four different driving cycles. From the simulation results of constant velocity, it is found that the decreasing rate of maximum driving range for EV is larger than the one for ICE as both the vehicle velocity and the driving power increase. It is because the battery efficiency of EV decreases as both the velocity and the driving power increase, whereas the engine and transmission efficiencies of ICE vehicle increase. From the results of four driving cycle simulation, the maximum driving range of EV is shown to decrease by 50% if the average driving power of driving cycle increases from 10 to 20kW. It is because the battery efficiency decreases as the driving power increases. In contrast, the maximum driving range of ICE vehicle also increases as the average driving power of driving cycle increases. It is because the engine and transmission efficiencies also increase as the driving power increases.

Development of Regenerative Braking Control Algorithm for In-wheel Motor Type Fuel Cell Electric Vehicles Considering Vehicle Stability (차량 안정성을 고려한 인휠모터 방식 연료전지 전기자동차용 회생제동 알고리즘 개발)

  • Yang, D.H.;Park, J.H.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.2
    • /
    • pp.7-12
    • /
    • 2010
  • In these days, the researches about hybrid and fuel cell electric vehicles are actively performed due to the environmental contamination and resource exhaust. Specially, the technology of regenerative braking, converting heat energy to electric energy, is one of the most effective technologies to improve fuel economy. This paper developed a regenerative braking control algorithm that is considered vehicle stability. The vehicle has a inline motor at front drive shaft and has a EHB(Electo-hydraulic Brake) system. The control logic and regenerative braking control algorithm are analyzed by MATLAB/Simulink. The vehicle model is carried out by CarSim and the driving simulation is performed by using co-simulation of CarSim and MATLAB/Simulink. From the simulation results, a regenerative braking control algorithm is verified to improve the vehicle stability as well as fuel economy.

  • PDF

Prediction of Tractive Performance of Tracked Vehicles Using a Computer Simulation Model

  • Park, W.Y.;Chang, Y.C.;Lee, K.S.
    • Agricultural and Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.34-38
    • /
    • 2003
  • A mathematical model was developed for estimating the mechanical interrelation between characteristics of soil and main design factors of a tracked vehicle, and predicting the tractive performance of the tracked vehicle. Based on the mathematical model, a computer simulation program (TPPMTV) was developed in the study. The model considered the continuous change in tension for the whole track of a tracked vehicle, the analysis of shape and tension of the track segment between sprocket and first roadwheel, and the side thrust on both sides of grouser by the active earth pressure theory in predicting the tractive performance of a tracked vehicle. Also, the model contained not only sinkage depth of the track but the pressure distribution under the track in analyzing the side thrust. The effectiveness of the developed model was verified by performing the draw bar pull tests with a tracked vehicle reconstructed for test in loam soil with moisture content of 18.92%. The predicted drawbar pulls by the model were well matched to the measured ones. Such results implied that the model developed in the study could estimate the drawbar pulls well at various soil conditions, and would be very useful as a simulation tool for designing a tracked vehicle and predicting its tractive performance.

  • PDF