• Title/Summary/Keyword: Vehicle Simulation

Search Result 3,360, Processing Time 0.035 seconds

A Design of a Simulation Platform to Test PRT Vehicle Operational Control Algorithms Using On-board Embedded Process Board (차상용 임베디드 제어보드를 이용한 PRT 차량 운행제어 알고리즘 시험을 위한 플랫폼 설계)

  • Lee, Jun-Ho;Jeong, Rac-Gyo;Kim, Yong-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1962-1967
    • /
    • 2009
  • This paper deals with a design of a platform to simulate PRT vehicle operational control algorithms using on-board embedded process board. The configuration of the platform is composed of the central control module, the station control module, man-machine interface and monitoring module. Since PRT system needs inherently very reliable vehicle operational control algorithm in order to avoid the impact between vehicles, it is very important to construct a simulation platform to test a designed vehicle operational control algorithm during the development process For the test of the proposed platform a path of the each moving vehicle is predefined in the central control system before the dispatch order is given to the vehicle. The simulation results show the effectiveness of the proposed simulation platform for test and evaluation of the PRT operational control algorithms.

Dynamic Simulation for Modules of a Magnetically-Levitated Vehicle (자기부상열차 모듈의 동특성 시뮬레이션)

  • Kim, Jong-Moon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.12
    • /
    • pp.653-660
    • /
    • 2006
  • In this paper, dynamic simulation results for modules of a magnetically-levitated(Maglev) vehicle are presented. The mathematical dynamic models for the Maglev vehicle are firstly derived. The Maglev system consists of one vehicle, two half-bogies, one guideway, four secondary suspensions, eight electromagnets and levitation control systems. Also, the dynamic characteristics are analysed by using the derived models. Finally, two simulations such as reference airgap step change of 1mm and rail step change of 1mm, are carried out. The dynamic simulation results are shown to testify the developed dynamic simulation program. From the results, we can see the possibility of the dynamic simulation program to develop a new Maglev vehicle system.

Simulation Model for Transport Vehicle on Automated Container Terminal (자동화 컨테이너터미널의 이송장비 시뮬레이션 모델)

  • Yang Chang Ho;Choe Yong Seok;Ha Tae Yeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.1165-1170
    • /
    • 2003
  • The objective of this study is to develop the simulation model of transport vehicle to analyze the required number of transport vehicle and to design the traffic pattern at automated container terminal. To model the transport vehicle, we defined the vehicle model and the traffic model using the state transition model of transport vehicle. An application of a simulation to simulate an automated container terminal with perpendicular layout is developed and described. From the results of simulation experiment, we obtained the vehicle speed and the number of vehicle under given productivity of container cranes, and analyzed the saving effect by cycle time.

  • PDF

Virtual Durability Test Procedures and Applications on Design of a Vehicle Suspension Module (자동차 현가모듈의 내구설계를 위한 가상 내구시험기법 정립 및 응용)

  • 손성효;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.144-150
    • /
    • 2003
  • Recently, the virtual test techniques using computer simulation play an important part in the vehicle development procedures in order to reduce the development time and cost by replacing the physical prototypes of the vehicle components or systems with the virtual prototypes. In this paper, virtual durability test procedures for the vehicle suspension module have been developed. Virtual durability test consists of dynamic simulation computing load history of suspension components, fatigue analysis computing the life of components. A vehicle suspension module for dynamic simulation are developed and validated by comparison with the measured data obtained from the field vehicle test. And on the basis of the validated vehicle suspension model, fatigue analysis has been performed for the virtual durability design of the suspension components.

Vehicle Steering Characteristics Simulation by a Driver Model (운전자 모델을 사용한 차량의 조향특성 시뮬레이션)

  • Lee, J.S.;Baek, W.K.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.61-68
    • /
    • 2003
  • Steering characteristics is an important factor in the evaluation of vehicle quality. To estimate steering characteristics in the vehicle conceptual design stage, vehicle dynamics simulation methods are very efficient. However, it is often difficult to simulate vehicle dynamics for the specific driving scenarios in open-loop driving environment. An efficient driver-in-the-loop vehicle model will be efficient for this job. A good tire model is also very important for the accurate vehicle dynamics simulation. In this research, a driver model is used to simulate vehicle steering dynamics for a 8-dof vehicle model with STI(Systems Technology, Inc.) tire model. For the demonstration of this model, a SUV(sports utility vehicle) and a sedan were simulated.

  • PDF

SIMULATION IN AUTOMOBILE INFORMATION AND COMMUNICATION SYSTEMS

  • Takaba, Sadao
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1991.10a
    • /
    • pp.41-77
    • /
    • 1991
  • A large number of R & D projects in automobile information and communication systems have been achieved in these twenty years to improve various aspects on automobile usage. Examples on simulation for evaluation of these systems such as these on road to vehicle communication, inter-vehicle communication, and vehicle guidance are shown.

  • PDF

Corner Braking Test and Simulation for Development of VDC System (VDC장치 개발을 위한 코너제동 실험 및 시뮬레이션)

  • 이창노;박혁성;김영관
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.211-216
    • /
    • 2003
  • The influence of braking force generated by one tire on vehicle dynamics was investigated by simulation and ground test. A 8 d. o. f vehicle model was developed for simulation. And a special device to apply brake pressure to individual wheel was built for vehicle test. As a result of corner braking test on straight driving, the dynamic responses such as yawrate, lateral acceleration and roll angle were produced in the vehicle, which were in a good agreement to the simulation results. This shows that comer braking used in VDC system can control vehicle dynamics to improve controllability and directional stability.

Development of a Tracked Vehicle Model for Real-time Simulation of Semi-active Suspension System (반능동 현수장치의 실시간 시뮬레이션용 궤도차량 모델 개발)

  • 손영일;이종호;송병석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.135-143
    • /
    • 2003
  • In this study, a real-time simulation model was developed for tracked vehicles with in-arm type semi-active hydro-pneumatic suspension unit using MATLAB S-functions. Since the vehicle model uses relative coordinates and massless link elements, the developed model has an enhanced analytic time performance. Through the comparison of simulation results with multi-body software(DADS), the vehicle model is verified. A controller using on-off skyhook control algorithm is designed with the pilot-centre]led proportional valve based on conventional damper characteristics. Exploiting the developed tracked vehicle model with other subsystem model such as a controller model, a suspension unit model, and a test road model, computer simulations are carried out. Control simulation results with the developed tracked vehicle model show that the semi-active suspension control system has a better performance than the conventional suspension system.

Development of a Real-Time Vehicle Dynamic Simulation Software (실시간 차량 동역학 시뮬레이션 S/W 개발)

  • Choi, G.J.;Lee, K.H.;Yoo, Y.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.30-37
    • /
    • 1995
  • In this research a real time vehicle dynamic simulation software, to be used on real time vehicle simulators, is developed using relative coordinates and suspension super-element concept. Accuracy of the software is verified through comparisons of simulation results with those of a commercial mechanical system dynamic analysis package. It is demonstrated that real time simulation on a workstation with a 15 D.O.F. vehicle model is possible.

  • PDF

HILS(Hardware-In-the-Loop Simulation) Development of a Steering HILS System (전동식 동력 조향 장치 시험을 위한 HILS(Hardware-In-the-Loop Simulation) 시스템 개발)

  • 류제하;노기한;김종협;김희수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.105-111
    • /
    • 1999
  • The paper presents development of a Hardware-In-the-Loop simulation (HILS) system for the purpose of testing performance, stability, and reliability of an electronic power steering system(EPS). In order to realistically test an EPS by the proposed HILS apparatus, a simulated uniaxial dynamic rack force is applied physically to the EPS hardware by a pnumatic actuator. An EPS hardware is composed of steering wheel &column, a rack & pinion mechanism, andas motor-driven power steering system. A command signal for a pneumatic rack-force actuator is generated from the vehicle handling lumped parameter dynamic model 9software) that is simulated in real time by using a very fast digital signal processor. The inputs to the real-time vehicle dynamic simulation model are a constant vehicle forward speed and from wheel steering angles driven through a steering system by a driver. The output from a real-time simulation model is an electric signal that is proportional to the uniaxial rack force. The vehicle handling lumped parameter dynamic model is validated by a fully nonlinear constrained multibody vehicle dynamic model. The HILS system simulation results sow that the proposed HILS system may be used to realistically test the performance stability , and reliability of an electronic power steering system is a repeated way.

  • PDF