• Title/Summary/Keyword: Vehicle Noise

Search Result 1,641, Processing Time 0.028 seconds

Design Tool Development of NVH of Vehicle Body (자동차 소음, 진동 저감을 위한 차체 설계 프로그램 개발)

  • 왕세명;이제원;기성현;문희곤;서진관
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.57-63
    • /
    • 1998
  • In this paper, a design tool using continuum design sensitivity analysis (DSA) method has been developed for noise, vibration, and harshness (NVH). Design sensitivity is formulated, implemented numerically, and named SENS1. SENS1 can compute the design sensitivity using model and response files of MSC/NASTRAN of vehicle. A of real vehicle model is considered to validate SENS1. Numerical study shows SENS1 is a useful tool to improve NVH performances of vehicle body.

  • PDF

Noise Reduction of Electric Vehicle using Passive Damping Material (수동형 패치를 이용한 전기차 소음 저감)

  • Kim, Hyunsu;Kim, Byeongil;Han, Won-ok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.6
    • /
    • pp.117-122
    • /
    • 2017
  • Cabin noise due to the electric powertrain of electrical vehicle may consists of motor noise caused by electrical mismatch and gear noise coming from reduction gearbox. These sound may be considered rather small noise compared to those of internal combustion engine, but without masking effect, the noise can be more annoying for customer. Thus, this paper demonstrates the characteristics of electrical vehicle powertrain noise, and the effect of passive damping material for the noise reduction. The typical motor noise can be affected by the motor torque. Also, it is demonstrated that the reduction gearbox may be a weak point for the noise path compared to the motor housing. With vehicle test, it is shown that the damping patch is more effective for noise reduction with deceleration condition than with acceleration condition.

Identification of flexible vehicle parameters on bridge using particle filter method

  • Talukdar, S.;Lalthlamuana, R.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.21-43
    • /
    • 2016
  • A conditional probability based approach known as Particle Filter Method (PFM) is a powerful tool for system parameter identification. In this paper, PFM has been applied to identify the vehicle parameters based on response statistics of the bridge. The flexibility of vehicle model has been considered in the formulation of bridge-vehicle interaction dynamics. The random unevenness of bridge has been idealized as non homogeneous random process in space. The simulated response has been contaminated with artificial noise to reflect the field condition. The performance of the identification system has been examined for various measurement location, vehicle velocity, bridge surface roughness factor, noise level and assumption of prior probability density. Identified vehicle parameters are found reasonably accurate and reconstructed interactive force time history with identified parameters closely matches with the simulated results. The study also reveals that crude assumption of prior probability density function does not end up with an incorrect estimate of parameters except requiring longer time for the iterative process to converge.

Study on the Effect of Elastic Wheel from the viewpoint of Noise and Vibration of railway Vehicle (방음차륜에 의한 철도차량 소음진동저감 연구)

  • 유원희;김재철;문경호;서정원;팽정광
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.291-298
    • /
    • 1998
  • The object of this study is to investigate the effect of elastic wheel from the viewpoint of noise and vibration of railway vehicle. The vibration reduction was predicted from the FRF difference between elastic wheel and solid wheel by FEM simulation. The elastic wheel and solid wheel were compared in viewpoint of carbody vibration and car interior noise level. The effect of elastic wheel on the noise and vibration of subway vehicle was obtained. But, the application of elastic wheel must be reviewed in some aspect.

  • PDF

Improvement of Interior Booming Noise in the Vehicle Using the Structural Dynamic Modification (구조물 동특성 변경을 이용한 실내 부밍 소음 개선)

  • Kim, Young-Ha;Lee, Jae-Woong;Kim, Sung-Gi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.354-359
    • /
    • 2012
  • Improvement of structure-borne noises in the vehicle compartments has been one of the primary concerns in the development of vehicles. The booming is an annoying low frequency interior noise and vibration in vehicle. But it is difficult to reduce the structure-born booming noise in traditional method - trial and error within the shorten development schedule. So in present, the structure dynamic modification (SDM) method helpful to predict the effect of the local mass, stiffness, and damping is introduced. So in order to reduce the interior booming noise, the SDM was performed, and verified with modal test result. It was shown that the interior booming noise was reduced as predicted.

  • PDF

Improvement of Axle Noise for Recreational Vehicle (RV 차량의 액슬 소음 음질 개선에 관한 연구)

  • Yu, Dong-Jun;Lee, Sang-Kwon;Jo, Yoon-Kyeong;Choi, Byung-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.323-326
    • /
    • 2004
  • In these days, gear whine noise of the axle and transmission is getting more important for reduction of vehicle noise, because major noise of vehicle was reduced. Therefore, in this paper, axle noise and vibration is measured, and then the modal analysis and running modal analysis is applied for reduction of axle gear whine noise.

  • PDF

Construction of Sound Quality Index for the Vehicle HVAC System Using Regression Model and Neural Network Model (회귀모형과 신경망모형을 이용한 차량공조시스템의 음질 인덱스 구축)

  • Park, Sang-Gil;Lee, Hae-Jin;Sim, Hyun-Jin;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1443-1448
    • /
    • 2006
  • The reduction of the vehicle interior noise has been the main interest of NVH engineers. The driver's perception on the vehicle noise is affected largely by psychoacoustic characteristic of the noise as well as the SPL. In particular, the HVAC sound among the vehicle interior noise has been reflected sensitively in the side of psychology. Even though the HVAC noise is not louder than overall noise level, it clearly affects subjective perception in the way of making a diver become nervous or annoyed. Therefore, these days a vehicle engineer takes aim at developing sound quality as well as reduction of noise. In this paper, we acquired noises in the HVAC from many vehicles. Through the objective and subjective sound quality evaluation with acquiring noises caused by the vehicle HVAC system, the simple and multiple regression models were obtained for the subjective evaluation 'Pleasant' using the sound quality metrics. The regression procedure also allows you to produce diagnostic statistics to evaluate the regression estimates including appropriation and accuracy. Furthermore, the neural network model were obtained using three inputs(loudness, sharpness and roughness) of the sound quality metrics and one output(subjective 'Pleasant'). And then the models were compared with correlations between sound quality index outputs and hearing test results for 'Pleasant'. As a result of application of the sound quality index, the neural network was verified with the largest correlation of the sound quality index.

  • PDF

Parameter Analysis of Sound Radiation for Bridges Under Moving Vehicles (이동차량하중에 의해 발생되는 교량진동음압의 매개변수 분석)

  • Lee Yong-Seon;Kim Sang-Ryo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.772-777
    • /
    • 2006
  • An acoustic finite element model of a bridge is developed to evaluate the noise generated by the traffic-induced vibration of the bridge. The dynamic response of a multi-girder bridge, modeled by a 3-dimensional frame element model, is analyzed with a 3-axle(8DOF) truck model and a 5-axle(l3DOF) semi-trailer. The flat plate element is used to analyze the acoustic pressure due to the fluid-structure interactions between the vibrating surface and contiguous acoustic fluid medium. The radiation fields of noise with a specified distribution of vibrating velocity and pressure on the structural surface are also computed using the Kirchhoff-Helmholtz integral. In an attempt to illustrate the influence of the structural vibration noise of a bridge to total noise level around the bridge, the random function is used to generate the vehicle noise source including the engine noise and the rolling noise interacting between the road and tire. Among the diverse parameters affecting the dynamic response of bridge, the vehicle velocity, the vehicle weight, the spatial distribution of the road surface roughness, the stiffness degradation of the bridge and the variation of the air temperature changing the air density are found to be the main factors that increase the level of vibration noise. Consequently, The amplification rate of noise increases with the traveling speed and the vehicle weight.

  • PDF

Influence of the Speeds on the Curve Squeal Noise of Railway Vehicles (철도차량의 곡선부 스킬 소음에 대한 속도의 영향)

  • Lee, Chan-Woo;Kim, Jae-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.572-577
    • /
    • 2011
  • Curve squealing of inter-city railway vehicle is a noise with high acoustic pressure and rather narrow frequency spectra. This noise turns out to be very annoying for the people living in the neighborhood of locations and the passenger in railway vehicle where this phenomenon occurs. Squealing is caused by a self-exited stick-slip oscillation in the wheel-rail contact. Curve squeal noise of railway vehicles that passed by a factor of the speed limit, so to overcome in order to improve running performance is one of the largest technology. In the present paper, characteristic of squeal noise behavior at the Hanvit-200 tilting train test-site. Curve squealing of railway wheels/rail contact occurs in R400~ R800 curves with a frequency range of about 4~11 kHz. If the curve is less than the radius of wheel frail contact due to |left-right| noise level difference (dBA) shows a significant effect of squeal noise were more likely.

A Study on the Evaluation Method of Sound Power for a Travelling Vehicle Using CPX and Pass-by Measurements (CPX 및 Pass-by 계측을 이용한 단독 주행 차량의 음향파워 평가 방법에 관한 연구)

  • Choi, T.M.;Moon, S.H.;Seo, Y.G.;Kim, J.H.;Kim, B.H.;Bae, H.J.;Ji, W.J.;Cho, D.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.11 s.116
    • /
    • pp.1124-1131
    • /
    • 2006
  • This paper presents a novel method to determine sound power level(PWL) emitted by a travelling vehicle for road traffic noise simulation. The PWL is evaluated by the equivalent sound pressure level (SPL) measured by close proximity method and the sound power correction factor derived from the maximum SPL measured by pass-by method and the propagation attenuation of vehicle noise during the pass-by measurement. Using the method, we derive the empirical formula for PWL estimation in 1/1-octave and overall frequency bands for 8 vehicles (automobile, SUV, small truck, large bus, trailer, 3 dump trucks) tested at two road surfaces (dense graded asphalt, 30mm transverse tinning concrete) of Korean highway test road. The suggested approach, if securing sufficient data to represent the acoustic characteristics of all vehicle types, has il strong merit to be able to evaluate sound power levels for any combination of vehicle categories and traffic volumes.