• Title/Summary/Keyword: Vehicle Location

Search Result 811, Processing Time 0.023 seconds

Design of an Absolute Location and Position Measuring System for a Mobile Robot

  • Kim, Dong-Hwan;Park, Young-Chil;Hakyoung Chung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1369-1379
    • /
    • 2001
  • This paper focuses on a development of a sensor system measuring locations of a vehicle to localize a mobile robot while it tracks on the track (location sensor) . Also it focuses on a system configuration identifying the vehicle's orientation and distance from the object while it is stationary at certain station (position sensor) . As for the location sensor it consists of a set of sensors with a combined guiding and counting sensor, and an address-coded sensor to localize the vehicle while moving on the rail. For the position sensor a PSD (Position Sensitive Device) sensor with photo-switches sensor to measure the offset and orientation of the vehicle at each station is introduced. Both sensor systems are integrated with a microprocessor as a data relay to the main computer controlling the vehicle. The location sensor system is developed and its performance for a mobile robot is verified by experiments. The position measuring system is proposed and is robust to the environmental variation. Moreover, the two kinds of sensor systems guarantee a low cost application and high reliability.

  • PDF

A Combined Location and Vehicle Routing Problem (입지선정 및 차량경로문제)

  • 강인선
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.37
    • /
    • pp.263-269
    • /
    • 1996
  • The cost and customer service level of a logistics system depend primarily on the system design of the physical supply system and physical distribution system. The study presents the mathematical model and a huristic solution method of a combined location - vehicle routing problem(LVRP). In LVRP the objective is to determine the number and location of the distribution centers, the allocation of customers to distribution centers, and the vehicle delivery routes, so as to minimize the logistics total cost and satisfy the customer.

  • PDF

An Improvement for Determining Response Modification Factor in Bridge Load Rating (응력보정계수 산정 방법 개선)

  • Koo, Bong-Kuen;Shin, Jae-In;Lee, Sang-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.169-175
    • /
    • 2001
  • Bridge load rating calculations provide a basis for determining the safe load capacity of bridge. Load rating requires engineering judgement in determining a rating value that is applicable to maintaining the safe use of the bridge and arriving at posting and permit decisions. Load testing is an effective means in calculating the rating value of bridge. In Korea, load carrying capacity of bridge is modified by response modification factor that is determined from comparisons of measured values and analysis results. The response modification factor may be corrupted by vehicle location error that is defined as the gap of test vehicle location between load testing and analysis. In this study, the effects of vehicle location error to structural response and response modification factor are investigated, and a new method for evaluating response modification factor is proposed. The random data analysis shows that the proposed method is less sensitive to vehicle location error than the present method.

  • PDF

An Improved Method for Determining Response Correction Factor in Bridge Load Rating (교량응력보정계수 산정방법 개선)

  • 신재인;이상순;이상달
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1273-1278
    • /
    • 2000
  • Bridge load rating calculations provide a basis for determining the safe load capacity of bridge. Load rating requires engineering judgement in determining a rating value that is applicable to maintaining the safe use of the bridge and arriving at posting and permit decisions. Load testing is an effective means in calculating the rating value of bridge. In Korea, load carrying capacity of bridge is modified by stress modification factor that is determined from comparisons of measured values and analysis results The stress modification factor may be corrupted by vehicle location error that is defined as the gap of test vehicle location between load testing and analysis. In this study, the effects of vehicle location error to structural response and stress modification factor are investigated, and a new method for evaluating stress modification factor is proposed. The random data analysis shows that the proposed method is less sensitive to vehicle location error than the present method.

Development of Advanced Vehicle Tracking System Using the Uncertainty Processing of Past and Future Locations

  • Kim Dong Ho;Kim Jin Suk
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.729-734
    • /
    • 2004
  • The e-Logistics means the virtual business activity and service architecture among the logistics companies based on the Internet technology. The management of vehicles' location in most conventional vehicle tracking system has some critical defects when it deals with data which are continuously changed. It means the conventional vehicle tracking system based on the conventional database is unable eventually to cope with the environment that should manage the frequently changed location of vehicles. The important things in the evaluation of the vehicle tracking system is to determine the threshold of cost of database ,update period and communication period between vehicles and the system. In other words, the difference between the reallocation of vehicle and the data in database can evaluate the overall performance of vehicle tracking systems. Most of the previous works considers only the information that is valid at the current time, and is hard to manage efficiently the past and future information. To overcome this problem, the efforts on moving objects management system(MOMS) and uncertainty processing have been started from a few years ago. In this paper, we propose an uncertainty processing model and system implementation of moving object that tracks the location of the vehicles. We adopted both linear-interpolation method and trigonometric function to chase up the location of vehicles for the past time as well as future time, respectively. We also explain the comprehensive examples of MOMS and uncertainty processing in parcel application that is one of major application of e-Logistics domain.

  • PDF

Location Responsive Vehicle Digital Signage System for Visual Mobile Advertisement

  • Lee, Byoungduk;Yang, Seungyoun;Shin, Jaekwon;Kim, Jintae;Lee, Seonhee
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.49-53
    • /
    • 2017
  • In this paper we present the combination of location based mobile advertisement services and dynamic digital signage markets has been developing recent days to provide consumer admired visual mobile advertisement on all kind transportation vehicles. In spite of that, the digital signage advertisement content management is still not that easy to manage the content dynamically as well operation is most time consuming to handle the contents dynamically in digital signage business. As location based services is most impactful service in shopping, the location responsive advertisement on vehicle signage will be most desirable mobile advertisement to help people migrate from one place to another place for travel or stay. This paper propose a mobile location responsive digital signage system for vehicles using the GPS and wireless infrastructure integrated with digital signage system. This proposed research use the centralized digital signage system architecture for the mobile advertisement application and this system can be expanded to different vehicles for digital advertisement including buses, trucks, train, air vehicle and any other form of mobile advertising vehicles. Also, this present an effective advertisement recommendation algorithm, by which the advertisement can be selected broadcasted for the right advertisement ventures more effectively as the service requested from advertiser. This paper present the emulated experimental result to evidence the proposed dynamic vehicle signage system performed better than compared with traditional signage random advertising. The emulated result proves that the advertisement recommendation algorithm can effectively works out the targeted key audiences in location responsive region the algorithm evaluated.

A Experimental Study on the Measurement and Estimation of Vehicle Center of Gravity (차량무게중심의 측정 및 추정에 관한 연구)

  • Lee, Myung-Su;Kim, Sang-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.91-99
    • /
    • 2010
  • The center of gravity on vehicle is a fundamentally important point for assessing and measuring the characteristics of vehicle dynamics. Especially, the center of gravity height on vehicles is the closest factor with respect to rollover accidents in a social issue nowadays. In this paper, the center of gravity height in conjunction with vehicle parameters of vehicle weight, driving axle and roof height after measured by vehicle weight and loading location by means of VCGM developed by KATRI with good performance that the accuracy was less than 0.6% and repeatability 0.3% for vehicles being used in the whole world was observed. As a result of study, the location of center of gravity height on vehicle was able to be estimated with only roof height on vehicle.

Location-based System for Tracking Similar Trajectories Using Hybrid Method (하이브리드 기법을 이용한 LBS기반의 유사궤적 추적시스템)

  • Han, Kyoung-Bok;Kwon, Hoon;Lee, Hye-Sun;Kwak, Ho-Young
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.6
    • /
    • pp.9-21
    • /
    • 2007
  • In this paper, the hybrid methods are suggested, which use the direction angle information to present running trajectory and track the past locations through a small amount of vehicle's location information. In order to prove the effectiveness of the new technique suggested here, vehicle's location information are collected by running the vehicles moving objects under various conditions. Using the location informations and direction angle information collected with time intervals, the vehicl e's location information is abstracted, compared and analyzed. and I have proved that the suggested techniques are more effective by comparing them with others in various methods such as GPS TrackMaker, difference image techniques, consistency comparison, quantity comparison, vehicle's running distances and so on.

U-LBS : Precise Location Data Through a Car Crash Location System (U-LBS : 정밀 위치 데이터를 통한 차량 충돌 사고 위치 확인 시스템)

  • Moon, Seung-Jin;Lee, Yong-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1150-1156
    • /
    • 2009
  • The spread of wireless Internet technology development and applications with location information in the form of location-based services are more varied. In particular, where you recognize the location of objects such as people and things, and to provide valuable services based on ubiquitous, location-based services (Ubiquitous Location Based Services: u-LBS) is emerging as an important service. In this paper precise location data to the car crash through the location and offers related service system. In this paper the precise location tracking proposed by the concept of the Rail, road, to extract the location Data Matching Data and the current location is obtained. System used in GPS Packet and information about the location of the vehicle collision and the collision time, the vehicle consists of NodeID is about. Using these data, a packet is to be created when the conflict between vehicles in the vehicle will be sent to Gateway. Gateway to the packets that were sent from the Server to determine whether the conflict is that in an emergency situation, Emergency Center for location information and let me know whether or not the conflict will be measured. Also, for those on the outside of an emergency such as a family related to the wireless terminal wireless (PDA, cell phone) is to let me know. Server get into the conflict that was configured to store information on the Database. Additionally, the proposed u-LBS system to verify the validity of the experiment was performed.

A Study on the Location of Bus & Truck Automobile Maintenance Company (상용자동차 정비업체의 입지선정에 관한 연구)

  • Kim, Ju-Yong;Jo, Eun-Hyeon;Lee, Dong-Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.23-30
    • /
    • 2019
  • Automobiles are largely divided into passenger cars with less than five passengers and commercial vehicles such as construction machines, trucks, mixers, special lorries, and large buses. Automobile maintenance companies are also divided into passenger cars and commercial vehicles. Because commercial vehicles are the livelihood vehicles of individual carriers engaged in cargo transportation, passenger transportation, and construction, fast and accurate maintenance is important. Access to the expressway is also important because the car is large and uses highways. In addition, the time required for troubleshooting is long, so sufficient space must be secured for parking the vehicle, and ease of entry and exit of the vehicle in the maintenance shop should be fully considered. For this reason, commercial vehicle maintenance companies have higher initial investment costs than car maintenance companies, and it is difficult to supply and maintain maintenance personnel. Therefore, it is necessary to carefully examine and analyze various related factors for successful commercial vehicle maintenance company selection. However, most existing commercial vehicle maintenance companies often choose their location based on the empirical judgment of the founder, the customs and the case, without a clear analysis. In this study, we show how to derive the location selection factors to be considered when establishing professional maintenance company for commercial vehicles and to select the optimal location by using AHP (Analytic Hierarchy Process) method.