• Title/Summary/Keyword: Vehicle Load

Search Result 1,442, Processing Time 0.023 seconds

Study on Deriving the Buckling Knockdown Factor of a Common Bulkhead Propellant Tank (공통격벽 추진제 탱크 구조의 좌굴 Knockdown Factor 도출 연구)

  • Lee, Sook;Son, Taek-joon;Choi, Sang-Min;Bae, Jin-Hyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.10-21
    • /
    • 2022
  • The propellant tank, which is a space launch vehicle structure, must have structural integrity as various static and dynamic loads are applied during ground transportation, launch standby, take-off and flight processes. Because of these characteristics, the propellant tank cylinder, the structural object of this study, has a thin thickness, so buckling due to compressive load is considered important in the cylinder design. However, the existing buckling design standards such as NASA and Europe are fairly conservative and do not reflect the latest design and manufacturing technologies. In this study, nonlinear buckling analysis is performed using various analysis models that reflect initial defects, and a method for establishing new buckling design standards for cylinder structures is presented. In conclusion, it was confirmed that an effective lightweight design of the cylinder structure for common bulkhead propulsion tank could be realized.

A Study on Automatic Multi-Power Synchronous Transfer Switch using New DFT Comparator (새로운 DFT 비교기를 이용한 자동 다전원 동기절체 스위치에 관한 연구)

  • Kwak, A-Rim;Park, Seong-Mi;Son, Gyung-Jong;Park, Sung-Jun;Kim, Jong-Cheol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.423-431
    • /
    • 2022
  • The UPS(Uninterruptible Power Supply) system operates in the battery charging mode when the grid is normal, and in the UPS mode, which is the battery discharge mode when a grid error occurs. Since the UPS must supply the same voltage as the grid to the load within 4 [ms] in case of a grid error, the switching time and power recovery time should be short when controlling the output voltage and current of the UPS, and the power failure detection time is also important. The power outage detection algorithm using DFT(Discrete Fourier Transform) proposed in this paper compares the grid voltage waveform with the voltage waveform including the 9th harmonic generated through DFT using Schmitt trigger to detect power outage faster than the existing power outage monitoring algorithm. There are advantages. Therefore, it is possible to supply instant and stable power when switching modes in the UPS system. The multi-power-applied UPS system proposed in this paper uses DFT, which is faster than the conventional blackout monitoring algorithm in detecting power failure, to provide stable power to the load in a shorter time than the existing power outage monitoring algorithm when a system error occurs. The detection method was applied. The changeover time of mode switching was set to less than 4 [ms], which is 1/4 of the system cycle, in accordance with KSC 4310 regulation, which was established by the Industrial Standards Council on the regulation of uninterruptible power supply. A 10 [kW] UPS system in which commercial voltage, vehicle generator, and auxiliary diesel generator can be connected to each of the proposed transfer devices was constructed and the feasibility was verified by conducting an experiment.

Development and Evaluation of Large Scale Composite Lattice Structures (대형 복합재 격자구조체 개발 및 평가)

  • Kim, Donggeon;Doh, Youngdae;Kim, Gensang;Kim, Myungjoo;Lee, Sangwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.74-86
    • /
    • 2021
  • The composite lattice structure is a structure that supports the required load with the minimum weight and thickness. Composite lattice structure is manufactured by the filament winding process using impregnating high-strength carbon fiber with an epoxy resin. Filament winding process can laminate and manufacture only structurally necessary parts, composite lattice structure can be applied to aircraft fuselages, satellite and launch vehicles, and guided weapons to maximize weight reduction. In this paper, the development and evaluation of the composite lattice structure corresponding to the entire process from design, analysis, fabrication, and evaluation of large-scale cylindrical and conical composites lattice structure were performed. To be applicable to actual projectiles and guided weapons, we developed a cylindrical lattice structure with a diameter of 2,600 mm and a length of 2,000 mm, and a conical lattice structure with an upper diameter of 1,300 mm, a lower diameter of 2,500 mm, and a length of 900 mm. The performance of the developed composite lattice structure was evaluated through a load test.

Structural Design and Analysis for Carbon/Epoxy Composite Wing of A Small Scale WIG Vehicle (소형 위그선의 탄소/에폭시 복합재 주익의 구조 설계 및 해석에 관한 연구)

  • Park, Hyun-Bum;Kang, Kuk-Jin;Kong, Chang-Duk
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.12-19
    • /
    • 2006
  • In this paper, conceptual structural design of the main wing for a small scale WIG(Wing in Ground Effect) among high speed ship projects, which will be a high speed maritime transportation system for the next generation in Rep. of Korea, was performed. The Carbon/Epoxy material was selected for the major structure, and the skin-spar with a foam sandwich structural type was adopted for improvement of lightness and structural stability. As a design procedure for the present study, firstly the design load was estimated through the critical flight load case study, and then flanges of the front and rear spars from major bending loads and the skin and the spar webs from shear loads were preliminarily sized using the netting rule and the rule of mixture. Stress analysis was performed by a commercial FEA code, NASTRAN. From the stress analysis results for the first designed wing structure, it was confirmed that the upper skin between the front spar and the rear spar was unstable fer the buckling. Therefore in order to solve this problem, a middle spar and the foam sandwich type structure at the skin and the web were added. After design modification, the structural safety and stability for the final design feature was confirmed. In addition to this, the insert bolt type structure with eight high strength bolts to fix the wing structure to the fuselage was adopted for easy assembly and removal as well as in consideration of more than 20 years fatigue life.

Displacement Evaluation of Cable Supported Bridges Using Inclinometers (경사계를 이용한 케이블교량의 변위 산정)

  • Kong, Min Joon;Yun, Jung Hyun;Kang, Seong In;Gil, Heungbae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.297-308
    • /
    • 2023
  • Displacement of structures is the most important parameter for safety and performance assessment and is measured to use for diagnosis and maintenance of bridges. Usually LVDT, Laser and GNSS are used for displacement measurement but these measurement instruments have problems in terms of field condition and cost. Therefore, in this study, displacements were evaluated using rotational angle measured by inclinometers and the proposed algorithm was experimentally verified. As the result, vertical displacements of cable supported bridges with traffic and temperature load were properly evaluated through the proposed algorithm. Therefore it is considered that the proposed algorithm can be used for displacement measurement by vehicle load test and long term displacement monitoring.

A Study on Relationship between Structural Safety and Maintenance of Derailing Prevent Guard Rail (탈선방지 가드레일의 구조안전성과 유지보수 상관성에 관한 연구)

  • Jung-Youl Choi;Hyeon-Yo Park;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.593-599
    • /
    • 2023
  • There is risk of derailment due to various factors such as vehicle-track load imbalance in curved parts, so urban railways install and operate derailing prevent guard rails. The angle-type derailing prevent guard rail is composed of various parts including the guard angle. Even if derailment does not occur, various damages occur in the components, so continuous maintenance is required. Through the damage status analysis, the components of the angle-type derailing prevent guard rail with high damage frequency were classified, and conditions for the occurrence of various damages were investigated. In addition, a numerical analysis using a precise 3D numerical model was performed to analyze the cause of the damage analytically. In order to analytically simulate the derailment situation, the static ultimate load condition was applied, and the actual drawing of the angle-type derailing prevent guard rails, rails, and wheels was used for modeling. By analyzing the results of the damage status investigation and finite element analysis, we tried to investigate the damage of the components.

A Study on the Structural Safety Analysis of Neck Mount Block of Type 4 Hydrogen Storage Vessel by Finite Element Method (유한요소법을 이용한 type 4 수소저장용기용 고정 장치의 구조적 안전성 분석에 관한 연구)

  • GUNWOO KIM;HYEWON KIM;HANMIN PARK;JEONGHO LEE;SUJIN YOON;HANSU LEE;JOUNGLYUL KIM;SEOKJIN LEE;GYEHYOUNG YOO;YOUNGGIL YOUN;HANSANG KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.195-204
    • /
    • 2024
  • The study involves a finite element analysis to evaluate the structural integrity of the neck mount block for a type 4 hydrogen storage vessel, with the aim of enhancing its strength and rigidity. The existing neck mount block consists of a fixed part and a sliding part, each comprising a body block for load support, a screw part for neck boss fixation, and bolts. To analyze the vulnerabilities of the neck mount block under bolt fastening and load conditions relative to vehicle travel directions, a structural analysis process was developed. Comparative analysis between the enhanced design and the existing model was performed, resulting in improved strength and rigidity. The objective is to provide guidance for the current product development and to offer fundamental data for the design and structural analysis of future development projects.

Optimization-based model correlation of satellite payload structure (위성 탑재체 구조물의 최적화 기반 모델 보정)

  • Do-hee Yoon
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.104-116
    • /
    • 2024
  • A satellite is ultimately verified by performing a coupled load analysis with the launch vehicle. To increase the accuracy of the coupled load analysis results, it is important to have good accuracy of the finite element model. Therefore, finite element model correlation is essential. In general, model correlation is performed by changing the material properties and thickness one by one, but this process takes a lot of time and cost. The current paper proposes an efficient model correlation method using optimization. Significant variables were selected through analysis of variance, and the time and cost required for analysis and optimization were reduced by using the Kriging surrogate model. The method proposed in this paper can be applied only with the vibration test results, and it has a great advantage in terms of efficiency in that it can significantly reduce the numerical calculation cost and time required.

Research on valuation of ecosystem services for water quality improvement using unmanned aerial vehicles -Focusing on Purchased land in Gwangdong-ri area, Gwangju city(Gyeonggi)- (무인항공기를 활용한 수질개선 생태계서비스 가치 평가 방안 연구 - 경기도 광주시 광동리 일원 매수토지를 중심으로 -)

  • Mun, Dong-Choel;Kil, Sung-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.1
    • /
    • pp.1-16
    • /
    • 2024
  • The riparian area plays a crucial role in maintaining the balance between the aquatic and terrestrial ecosystems. The Korean government has recognized the importance of protecting riparian areas and has taken steps to purchase land and create ecobelt to reduce non-point source pollutants(NSPs) that can negatively impact water quality. However, selecting the catchment area and calculating the pollution load can be challenging due to the small area of the purchased land and the limitations of low-resolution DEMs. To address these challenges, this study proposes the use of unmanned aerial vehicles(UAVs) to create a high-resolution DEM and calculate the pollution load through land cover analysis. This approach can provide a more accurate representation of the land use status and help to identify areas that are contributing to NSPs. The quantitative comparison of the difference in water quality improvement ecosystem services according to the scenarios of additional catchment areas shows that even land purchased for the same amount of money may have different ecosystem service values, and this was quantitatively calculated. This can be used to prioritize future land acquisition. Overall, this study's approach could provide valuable insights into the effectiveness of ecobelt in reducing NSPs and inform future efforts to protect riparian areas in Korea and beyond.

A Study on Serviceability of PVDF Piezoelectric Sensor for Efficient Vehicle Detection (효율적 차량 검지를 위한 PVDF 압전센서의 사용성 연구)

  • Jung, YooSeok;Oh, JuSam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.151-157
    • /
    • 2018
  • Among the various sensors for measuring traffic, PVDF (polyvinylidene fluoride) piezoelectric sensors are used to classify vehicles because they can detect the axle of the vehicle. Piezoelectric sensors are embedded in road pavements and are always exposed to traffic loads and environmental loads. Therefore, the life expectancy is very short, less than 6 years. Traffic control is essential for reinstallation and data collection is interrupted during the failure period. The lifespan will increase if the sensor installation depth is increased. In this study, the sensor signal output was analyzed with a variable depth of sensor installation to verify the possibility of deeper installation. Furthermore, various parameters, such as the weight and speed, were analyzed. The wheel load is applied using APT. As a result, the MSI BL sensor output signal is higher than 100mV when installed at 3cm, which is reliable. If the location of the sensor is deeper in the pavement, the expected lifetime of the sensor is also increased. On the other hand, the MSI cable was found to be less than 100mV at the shallowest depth of 1cm, making it impossible for field applications.