The LPR system's trigger sensor makes problem occasionally due to the heave weight of vehicle or the obsolescence equipment. If we replace the hardware sensor to the deep-learning based software sensor in order to generate the trigger signal, LPR system maintenance would be a lot easier. In this paper we proposed the deep-learning sliding window based object detection and tracking algorithm for the LPR system's trigger signal generation. The gate passing vehicle's license plate recognition results are combined into the normal tracking algorithm to catch the position of the vehicle on the trigger line. The experimental results show that the deep learning sliding window based trigger signal generating performance was 100% for the gate passing vehicles including the 5.5% trigger signal position errors due to the minimum bounding box location errors in the vehicle detection process.
차량 번호판 인식 시스템은 차량 보급의 대중화와 그에 따라 발생되는 여러문제의 해결차원에서 활발하게 연구 개발되고 있는 분야이다. 본 논문에서는 휴대용 입력 장치로부터 획득한 차량 번호판 영상에서 차량 번호판이 가지는 특성을 이용하여 번호판을 추출한 후, 차량 번호판의 특성을 이용하여 개별 문자 영역들의 MBR(Minimum Boundary Rectangle)을 추출한다. 그리고. 불변 모멘트의 특징을 이용하여 기존의 템플릿 매칭 방식 보다 연산시간이 매우 빠르고 입력 영상내의 번호판 크기에 제약이 적온 장점을 가진 보다 향상된 차량 번호판 인식 시스템을 제안한다.
본 연구에서는 차량 번호판에서 추출된 문자영역의 DCT(Digital Cosine Transform) 계수와 LVQ (Learning Vector Quantization) 신경회로망을 이용하여 차량 번호판 인식 시스템을 구성하였다. 입력된 차량영상의 RGB 칼라정보를 이용하여 번호판 영역을 추출하고 추출된 번호판의 히스토그램과 문자의 상대적 위치정보를 병합하여 문자영역을 추출하였다. 이렇게 추출된 문자영역의 명암도 영상에 DCT를 적용하여 얻은 특징 벡터는 LVQ 신경회로망의 입력으로 사용되어 인식 과정을 수행한다. 제안된 시스템의 검증을 위하여 다양한 환경에서 촬영된 109대의 자가용 차량영상에 대하여 실험하여 상대적으로 높은 번호판 영역 추출율과 인식률을 보였다.
경제 성장과 생활 수준의 향상으로 인한 자동차 수의 증가는 않은 문제를 발생시키고 있다 제한된 인력과 비용으로 효율적인 자동차 관리를 위한 연구 분야 중에서 자동차 번호판 인식 (Vehicle Plate Recognition) 기술은 법규위반의 식별, 통행료 징수, 납세, 도난.도주 차량 확인 및 주차 관리 등의 않은 분야에 응용되고 있다. 자동차 번호판 문자 인식 문제와 같이 훈련 예제 수집 비용이 많이 드는 경우에 제한된 수의 훈련 예제를 최대한 활용하여 분류 성능을 향상시키기 위한 방안 중 하나로, 수집된 훈련 예제들로부터 가상의 예제를 생성하고, 생성된 가상 예제를 훈련 예제로 추가하여 학습하는 절러 연구가 수행된 바 있다. 본 논문에서는 자동차 번호판 문자 인식의 성능 향상을 위친 수집된 예제들을 적절히 병합하여 가상의 예제를 생성하는 방안에 관해 기술하고, 문자 인식 분야에서 일반적으로 많이 사용되는 여러 알고리즘에 대하여 다양한 가상 예제 생성 방안 및 다양한 생성 비율 따른 실험을 통해 그 효용성을 확인하였다
최근 객체 인식에 높은 성능을 가진 딥러닝 네트워크가 나오고 있다. 딥러닝을 이용한 객체 인식의 경우 성능 향상을 위해 학습 데이터 셋 구축이 중요하다. 데이터 셋을 구축하기 위해서는 이미지를 수집하고 라벨링 해야 한다. 이 과정은 많은 시간과 인력이 필요하다. 때문에 오픈 데이터 셋을 사용한다. 그러나 방대한 오픈 데이터 셋을 가지고 있지 않는 객체도 존재한다. 그 중 하나가 번호판 검출과 인식에 필요한 데이터이다. 이에 본 논문에서는 이미지를 최소화 하여 대용량 데이터 셋을 만들 수 있는 인조 번호판 생성기 시스템을 제안한다. 또한 인조 번호판 배치구조에 따른 검출률을 분석했다. 분석결과 가장 좋은 배치구조는 FVC_III, B이며 가장 적합한 네트워크는 D2Det이었다. 인조 데이터셋 성능은 실제 데이터셋의 성능보다 2~3%가 낮았지만, 인조 데이터를 구축하는 시간이 실제 데이터셋을 구축하는 시간보다 약 11배 빨라 시간적으로 효율적인 데이터 셋 구축 시스템임을 증명하였다.
현재 수입차 차량의 등록대수가 해를 거듭할수록 증가하는 추세이다. 그에 맞춰 수입차와 같은 고급 차량을 정비하기 위한 차량 정비 업체의 환경 개선이 지속적으로 이루어지고 있다. 본 논문에서는 정비 차량의 고객 신뢰도를 제공하기 위한 스마트 차량 관리 시스템을 구현하기 위해 HSV 색상모델 기반의 키 프레임 추출 기법을 제안한다. 수리 차량의 입고 시 차량 번호판 인식 프로세스를 통해 차량의 번호판을 자동으로 인식 후, 이를 기준으로 차량의 수리 이력 확인 및 수리 요청을 처리한다. 차량 수리 동영상을 토대로 차량 수리 키 프레임을 추출하여 사용자의 스마트폰으로 제공하는 서비스를 구현한다. 아울러 제안하는 기법을 스마트 차량 관리 시스템에 적용함으로써 서비스의 우수성을 검증한다. 마지막으로 키 프레임 추출 기법의 성능을 향상시키기 위해 RGB 색상을 HSV 색상으로 변환하여 처리한다. 그 결과 제안된 방법의 키 프레임 추출을 위한 성능 평가에서 기존의 RGB 색상모델보다 HSV 색상모델이 재현율 측면에서 약 30% 더 우수함을 확인하였다.
본 논문에서는 교통정보의 자동 전송시스템에 대한 연구결과를 제시한다. 여기서는 구급차나 소방차와 같은 긴급차량의 진로를 방해하는 것을 교통이벤트로 정의한다. 차량 내부에 설치된 블랙박스에 기록되는 동영상으로부터 교통이벤트 발생이 판정되는 경우 해당 정보를 증거영상과 함께 전자우편을 통하여 자동적으로 관제선터에 전송하는 시스템을 구현하였다. 이를 위하여, 전방에서 주행하는 차량의 번호판으로부터 문자와 숫자를 인식하는 알고리즘, 교통이벤트 발생 판정알고리즘을 실현하였다. 또한, 신고를 위하여 텍스트와 영상 파일을 전자우편과 파일전송프로토콜을 통하여 자동 전송하는 기능도 추가하였다. 따라서 교통이벤트를 확장하여 제시된 시스템에 적용하면 다양한 교통법규 위반 사항에 대한 편리한 신고체계를 수립할 수 있으므로 교통법규 위반 사례를 크게 줄일 수 있을 것으로 판단된다.
자동차 번호 인식에 대한 연구가 활발히 이루어져 왔으나, 번호판 이진화 방법들에 대한 비교 연구는 거의 이루어지지 않았다. 이로 인하여 관련 연구자들마다 효과적인 이진화 방법을 찾기 위하여 유사한 시행착오를 겪어 왔다. 본 연구에서는 이러한 시행착오를 줄일 수 있도록 기존의 번호판 이진화 방법들을 구현하여 성능을 양적으로 비교 제시하였다. 이진화 성능 측정은 저수준 척도와 고수준 척도를 모두 사용함으로써 이진화 자체에 대한 평가뿐만 아니라 후속 단계에서의 유용성을 함께 고려하였다. 그리고 이진화 방법들의 특성을 파악하기 위하여 조도의 특성에 따라 번호판 영상을 세 그룹으로 분류하여 이진화 성능을 측정하였다. 실험 결과 조도의 강도보다는 조도의 균일성 여부가 이진화 성능에 더 큰 영향을 미치는 것으로 나타났다. 조도가 균열한 영상은 Otsu의 방법이 가장 효과적이었으며, 조도가 불균일한 영상은 파라미터를 보정한 Niblack 방법이 가장 좋은 결과를 나타냈다.
꼬리물기는 교차로에 정체가 발생하면 녹색 현시라도 진입해서는 안 되는데 이를 무시하고 무리하게 진입, 신호가 바뀐 뒤 다른 방향의 차량흐름에 방해를 주는 행위이다. 인력에 의한 단속 방법은 한계가 있어 지속적으로 단속을 하기위해서는 대체 방안이 필요하다고 하겠다. 교차로에서의 꼬리물기 위반를 시스템을 통해 단속가능한 지 여부를 파악하기 위해 실제 현장에서 실험을 통해 평가를 수행하였다. 본 연구에서는 현재 운영 중인 신호위반 단속장비와 달리 위반 차량을 단속하는 시점을 교차로 진출부 횡단보도 부근에서 하였으며, 위반 차량을 역추적 방식으로 궤적을 추적하는 방식을 적용하였다. 현장 실험 결과 시스템에 다음과 같은 결론을 얻었다. 교차로 꼬리물기 위반 차량에 대한 단속 능력, 즉 위반차량 검지율 및 오검지율을 평가한 결과, 평균 검지율은 83.5%, 오단속률은 0.2, 오인식률 1.5%로 나타났다. 따라서 꼬리물기 위반 차량을 무인단속장비에 의해 단속을 할 수 있을 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.