• Title/Summary/Keyword: Vehicle Identification

Search Result 373, Processing Time 0.018 seconds

Analysis of Paint Used for a Helicopter Operated in the Korean War through the History of Paint Application (페인트 도장의 역사를 통해 본 6·25전쟁 운용 헬기의 도료분석)

  • Kang Hyunsam;Jang Hanul;Choi Yangho
    • Conservation Science in Museum
    • /
    • v.29
    • /
    • pp.133-152
    • /
    • 2023
  • This study references preceding studies to examine the history of paint application techniques using various paints in the past, with the aim to contribute to the long-term preservation of large military cultural heritage assets situated outdoors. To this end, the study compared the findings of preceding research with the findings of an analysis conducted on a H-13 helicopter housed at the War Memorial of Korea. Upon collecting and analyzing samples from three grounded WWII aircraft from above-ground by preceding studies, it was confirmed from each sample that the various chemical properties of chrome ensured the effectiveness of the protective coating. The compound was first tested as a corrosion-inhibiting pigment in the early 1940s and proved its excellent moisture-resistant properties over the course of 80 years, despite the deterioration of the paint layer and long-term exposure to the natural environment. For this reason, it has been widely used as a corrosion inhibitor for aluminum alloys in the aviation industry. In other word, the most widely-used material for preventing corrosion was an organic primer containing chromate. In this study, based on the paint analysis of a H-13 helicopter operated in the Korean War, it was shown that the second layer, consisting of the primer, contains chromium oxide (Cr2O3). In addition, it was estimated that red lead tetraoxide (Pb3O4) was used for the vehicle. Analysis results and data from previous studies can help to confirm the continued effectiveness of corrosion prevention function provided by chromate. Meanwhile, the result of infrared spectroscopy analysis confirmed the use of alkyd resin. In the future, comparisons with a more diverse range of artifacts will allow the identification of changes in the manufacturing technology of paints used to protect alloys from corrosion.

Study on Basic Elements for Smart Content through the Market Status-quo (스마트콘텐츠 현황분석을 통한 기본요소 추출)

  • Kim, Gyoung Sun;Park, Joo Young;Kim, Yi Yeon
    • Korea Science and Art Forum
    • /
    • v.21
    • /
    • pp.31-43
    • /
    • 2015
  • Information and Communications Technology (ICT) is one of the technologies which represent the core value of the creative economy. It has served as a vehicle connecting the existing industry and corporate infrastructure, developing existing products and services and creating new products and services. In addition to the ICT, new devices including big data, mobile gadgets and wearable products are gaining a great attention sending an expectation for a new market-pioneering. Further, Internet of Things (IoT) is helping solidify the ICT-based social development connecting human-to-human, human-to-things and things-to-things. This means that the manufacturing-based hardware development needs to be achieved simultaneously with software development through convergence. The essential element the convergence between hardware and software is OS, for which world's leading companies such as Google and Apple have launched an intense development recognizing the importance of software. Against this backdrop, the status-quo of the software market has been examined for the study of the present report (Korea Evaluation Institute of Industrial Technology: Professional Design Technology Development Project). As a result, the software platform-based Google's android and Apple's iOS are dominant in the global market and late comers are trying to enter the market through various pathways by releasing web-based OS and similar OS to provide a new paradigm to the market. The present study is aimed at finding the way to utilize a smart content by which anyone can be a developer based on OS responding to such as social change, newly defining a smart content to be universally utilized and analyzing the market to deal with a rapid market change. The study method, scope and details are as follows: Literature investigation, Analysis on the app market according to a smart classification system, Trend analysis on the current content market, Identification of five common trends through comparison among the universal definition of smart content, the status-quo of application represented in the app market and content market situation. In conclusion, the smart content market is independent but is expected to develop in the form of a single organic body being connected each other. Therefore, the further classification system and development focus should be made in a way to see the area from multiple perspectives including a social point of view in terms of the existing technology, culture, business and consumers.

DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA (한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발)

  • 박만배
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF