• Title/Summary/Keyword: Vehicle Detection System

Search Result 797, Processing Time 0.038 seconds

A Study of the Obstacle Detection System Using Virtual Bumper(1) (Virtual Bumper를 이용한 장애물감지에 관한 연구(I))

  • 최성락;김선호;박경택;유득신
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.315-320
    • /
    • 1999
  • Obstacle Detection System(ODS) is a essential system for automated vehicle, such as AGV(Automatic Guided Vehicle), mobile robot. Automated vehicle must have a capability to detect and to avoid obstacles to guarantee a safe driving condition. To implement obstacle detection system, virtual bumper concept adapted. Like real bumper in a car, such as in the truck, it protects vehicle from collision using laser distance sensor. When an obstacle(such as other vehicle, building, etc) intrudes this virtual bumper area, a virtual force is calculated and produces necessary strategy to be able to avoid collision. In this paper, simplified virtual bumper concept is presented, and various problems when happens to implement are discussed.

  • PDF

Signal Processing Algorithm of FMCW RADAR using DSP (DSP를 이용한 FMCW 레이다 신호처리 알고리즘)

  • 한성칠;박상진;강성민;구경헌
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.425-428
    • /
    • 2001
  • In this paper, FMCW radar signal processing technique for the vehicle detection system are studied. And FMCW radar sensor is used as a equipment for vehicle detection. To test the performance of developed algorithm, the evaluation of the algorithm is done by simulation for signal processing technique of vehicle detection system. RADAR signal of a driving vehicle is generated by using the Matlab. Distance and velocity of vehicles are calculated with developed a1gorithm. Also the signal processing procedure is done for the virtual data with FM-AM converted noise.

  • PDF

Preceding Vehicle Detection Method Using Shadow Recognition (그림자 인식을 이용한 전방차량 검출 방법)

  • Kim, Dong-Sub;Kwon, Han-Joon;Kim, Kyung-Sik;Kim, Yong-Deak
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.303-304
    • /
    • 2006
  • This paper proposes detection method of vehicles using camera for auto-vehicle-system. Detection method is based on shadow detection and symmetric feature of vehicle. This method consists of three part. First is lane detection. By lane detection, we can reduce the area for vehicle detection. Second part is shadow detection. Shadow has information of vehicle width and position. Third part is symmetry. This feature is helpful for confirming the vehicle.

  • PDF

Motion Sensor Fault Detection and Failsafe Logic for Vehic1e Stability Control Systems (VSCs)

  • Yi, Kyongsu;Min, Kyongchan
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1961-1968
    • /
    • 2004
  • The design of a reliable and failsafe control system requires that sensor failures be detected and identified within acceptable time limit so that system malfunction can be prevented. This paper presents a model-based approach to sensor fault detection with applications to vehicle stability control systems. The effectiveness of the proposed method is illustrated through test data-based evaluation. Vehicle test data-based evaluation results show that the proposed fault management scheme can be used for the design of a failsafe VSCs.

Accurate Parked Vehicle Detection using GMM-based 3D Vehicle Model in Complex Urban Environments (가우시안 혼합모델 기반 3차원 차량 모델을 이용한 복잡한 도시환경에서의 정확한 주차 차량 검출 방법)

  • Cho, Younggun;Roh, Hyun Chul;Chung, Myung Jin
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.1
    • /
    • pp.33-41
    • /
    • 2015
  • Recent developments in robotics and intelligent vehicle area, bring interests of people in an autonomous driving ability and advanced driving assistance system. Especially fully automatic parking ability is one of the key issues of intelligent vehicles, and accurate parked vehicles detection is essential for this issue. In previous researches, many types of sensors are used for detecting vehicles, 2D LiDAR is popular since it offers accurate range information without preprocessing. The L shape feature is most popular 2D feature for vehicle detection, however it has an ambiguity on different objects such as building, bushes and this occurs misdetection problem. Therefore we propose the accurate vehicle detection method by using a 3D complete vehicle model in 3D point clouds acquired from front inclined 2D LiDAR. The proposed method is decomposed into two steps: vehicle candidate extraction, vehicle detection. By combination of L shape feature and point clouds segmentation, we extract the objects which are highly related to vehicles and apply 3D model to detect vehicles accurately. The method guarantees high detection performance and gives plentiful information for autonomous parking. To evaluate the method, we use various parking situation in complex urban scene data. Experimental results shows the qualitative and quantitative performance efficiently.

Semi-Supervised Learning Based Anomaly Detection for License Plate OCR in Real Time Video

  • Kim, Bada;Heo, Junyoung
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.113-120
    • /
    • 2020
  • Recently, the license plate OCR system has been commercialized in a variety of fields and preferred utilizing low-cost embedded systems using only cameras. This system has a high recognition rate of about 98% or more for the environments such as parking lots where non-vehicle is restricted; however, the environments where non-vehicle objects are not restricted, the recognition rate is about 50% to 70%. This low performance is due to the changes in the environment by non-vehicle objects in real-time situations that occur anomaly data which is similar to the license plates. In this paper, we implement the appropriate anomaly detection based on semi-supervised learning for the license plate OCR system in the real-time environment where the appearance of non-vehicle objects is not restricted. In the experiment, we compare systems which anomaly detection is not implemented in the preceding research with the proposed system in this paper. As a result, the systems which anomaly detection is not implemented had a recognition rate of 77%; however, the systems with the semi-supervised learning based on anomaly detection had 88% of recognition rate. Using the techniques of anomaly detection based on the semi-supervised learning was effective in detecting anomaly data and it was helpful to improve the recognition rate of real-time situations.

Steering Control of Autonomous Vehicle by the Vision System

  • Kim, Jung-Ha;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.91.1-91
    • /
    • 2001
  • The subject of this paper is vision system analysis of the autonomous vehicle. But, autonomous vehicle is one of the difficult topics from the point of view of several constrains on mobility, speed of vehicle and lack of environment information. Therefore, we are application of the vision system so that autonomous vehicle. Vision system of autonomous vehicle is likely to eyes of human. This paper can be divided into 2 parts. First, acceleration system and brake control system for longitudinal motion control. Second vision system of real time lane detection is for lateral motion control. This part deals lane detection method and image processing method. Finally, this paper focus on the integration of tole-operating vehicle and autonomous ...

  • PDF

Lower Tail Light Learning-based Forward Vehicle Detection System Irrelevant to the Vehicle Types (후미등 하단 학습기반의 차종에 무관한 전방 차량 검출 시스템)

  • Ki, Minsong;Kwak, Sooyeong;Byun, Hyeran
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.609-620
    • /
    • 2016
  • Recently, there are active studies on a forward collision warning system to prevent the accidents and improve convenience of drivers. For collision evasion, the vehicle detection system is required. In general, existing learning-based vehicle detection methods use the entire appearance of the vehicles from rear-view images, so that each vehicle types should be learned separately since they have distinct rear-view appearance regarding the types. To overcome such shortcoming, we learn Haar-like features from the lower part of the vehicles which contain tail lights to detect vehicles leveraging the fact that the lower part is consistent regardless of vehicle types. As a verification procedure, we detect tail lights to distinguish actual vehicles and non-vehicles. If candidates are too small to detect the tail lights, we use HOG(Histogram Of Gradient) feature and SVM(Support Vector Machine) classifier to reduce false alarms. The proposed forward vehicle detection method shows accuracy of 95% even in the complicated images with many buildings by the road, regardless of vehicle types.

Fault Detection of Propeller of an Overactuated Unmanned Surface Vehicle based on Convolutional Neural Network (합성곱신경망을 활용한 과구동기 시스템을 가지는 소형 무인선의 추진기 고장 감지)

  • Baek, Seung-dae;Woo, Joo-hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.125-133
    • /
    • 2022
  • This paper proposes a fault detection method for a Unmanned Surface Vehicle (USV) with overactuated system. Current status information for fault detection is expressed as a scalogram image. The scalogram image is obtained by wavelet-transforming the USV's control input and sensor information. The fault detection scheme is based on Convolutional Neural Network (CNN) algorithm. The previously generated scalogram data was transferred learning to GoogLeNet algorithm. The data are generated as scalogram images in real time, and fault is detected through a learning model. The result of fault detection is very robust and highly accurate.

Development of a Drowsiness Detection System using a Histogram for Vehicle Safety (자동차 안전을 위한 히스토그램 이용 졸음 감지 시스템 개발)

  • Kang, Su Min;Huh, Kyung Moo;Joo, Young-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.102-107
    • /
    • 2015
  • In this paper, we propose a technique of drowsiness detection using a histogram for vehicle safety. The drowsiness of vehicle drivers is often the main cause of many vehicle accidents. Therefore, the checking of eye images in order to detect the drowsiness status of a driver is very important for preventing accidents. In our suggested method, we analyse the changes of a histogram of eye region images which are acquired using a CCD camera. We develop a drowsiness detection system using this histogram change information. The experimental results show that the proposed method enhances the accuracy of detecting drowsiness to nearly 97%, and can be used to prevent accidents due to driver drowsiness.