• Title/Summary/Keyword: Vehicle Communication System

Search Result 1,147, Processing Time 0.027 seconds

Tele-Operation System for Excavator using LTE Communication (LTE 통신을 사용한 건설용 굴삭기 원격조종시스템 개발)

  • Lee, Seung Chol;Kang, Byoung Hun
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.232-237
    • /
    • 2021
  • In this research, a real-time tele-operation system for unmanned excavator using the LTE communication system is suggested. The distance between the operator and the excavator is limitless as long as the LTE communication available. The motion and video data of the excavator is synchronized using the Vehicle Control Unit (VCU) and streamed to the operator for immersion feeling. The video is played on the operator's monitor and the motion data is used to regenerate the excavator movement on the developed master platform. In general, a excavator is tele-operated using RF signal and the maximum distance for direct control is limited to within a hundred meter. In this research, the immersion tele-operation system is suggested for excavator operation within an 100ms time delay using the developed master platform, the VCU and LTE communication. A successful test run of the suggested tele-operation system has already been performed between an operator in Songpa (Seoul) and a excavator in Ansan (Gyeonggi-do) which is approximately 35 km apart.

The study of Authorized / Unauthorized Vehicle Recognition System using Image Recognition with Neural Network (신경망 영상인식을 이용한 인가/비인가 차량 인식 시스템 연구)

  • Yoon, Chan-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.299-306
    • /
    • 2020
  • Image recognition using neural networks is widely used in various fields. In this study, we investigated licensed / unlicensed vehicle recognition systems necessary for vehicle number recognition and control when entering and exiting a specific area. This system is equipped with the function of recognizing the image, so it checks all the information on the vehicle number and adds the function to accurately recognize the vehicle number plate. In addition, it is possible to check the vehicle number more quickly using a neural network.

Performance Analysis of Short Range Inter-Vehicle DS/CDMA Communication System (근거리 차량간 DS/CDMA 통신시스템의 성능 분석)

  • Oh, Se-Kab;Kang, Heau-Joh;Choi, Yong-Surk;Cho, Sung-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.4 no.2
    • /
    • pp.143-151
    • /
    • 2000
  • In this paper, short range IVC(Inter-Vehicle Communication) channel is modeled in three kinds considering rain attenuation and oxygen absorption. And the performance of DS/CDMA communication system in one path Rician model suitable for platton driving which is the final goal of AVHS(Advanced Vehicle & Highway System) is analyzed. Also, the reflection coefficients in 60 GHz is calculated. For the performance improvement both BCH channel coding and MRC diversity reception technique are adopted. The BER performance is evaluated as a function of packet length, Rician depth and the distance between vehicles.

  • PDF

Airborne Antenna Switching Strategy Using Deep Learning on UAV Line-Of-Sight Datalink System

  • Jo, Se-Hyeon;Lee, Woo-Sin;Kim, Hack-Joon;Jin, So-Yeon;Yoo, In-Deok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.11-19
    • /
    • 2018
  • In the Unmanned Aerial Vehicle Line-Of-Sight datalink system, there is a possibility that the communication line is disconnected because line of sight can not be secured by one antenna due to changes in position and posture of the air vehicle. In order to prevent this, both top and bottom of air vehicle are equipped with antennas. At this time, if the signal can be transmitted and received by switching to an antenna advantageous for securing the line of sight, communication disconnection can be minimized. The legacy antenna switching method has disadvantages such that diffraction, fading due to the surface or obstacles, interference and reflection of the air vehicle are not considered, or antenna switching standard is not clear. In this paper, we propose an airborne antenna switching method for improving the performance of UAV LOS datalink system. In the antenna switching method, the performance of each of the upper and lower parts of the mounted antenna according to the position and attitude of the air vehicle is predicted by using the deep learning in an UAV LOS datalink system in which only the antenna except the receiver is duplicated. Simulation using flying test dataset shows that it is possible to switch antennas considering the position and attitude of unmanned aerial vehicle in the datalink system.

Unmanned Vehicle System Configuration using All Terrain Vehicle

  • Moon, Hee-Chang;Park, Eun-Young;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1550-1554
    • /
    • 2004
  • This paper deals with an unmanned vehicle system configuration using all terrain vehicle. Many research institutes and university study and develop unmanned vehicle system and control algorithm. Now a day, they try to apply unmanned vehicle to use military device and explore space and deep sea. These unmanned vehicles can help us to work is difficult task and approach. In the previous research of unmanned vehicle in our lab, we used 1/10 scale radio control vehicle and composed the unmanned vehicle system using ultrasonic sensors, CCD camera and kinds of sensor for vehicle's motion control. We designed lane detecting algorithm using vision system and obstacle detecting and avoidance algorithm using ultrasonic sensor and infrared ray sensor. As the system is increased, it is hard to compose the system on the 1/10 scale RC car. So we have to choose a new vehicle is bigger than 1/10 scale RC car but it is smaller than real size vehicle. ATV(all terrain vehicle) and real size vehicle have similar structure and its size is smaller. In this research, we make unmanned vehicle using ATV and explain control theory of each component

  • PDF

The Design and Implementation of the Mutual Message Processing between WME Module and MLME Module for Vehicle Communication Technology (차량 통신 기술을 위한 WME 모듈과 MLME 모듈 간의 상호 메시지 처리과정 설계 및 구현)

  • Jang, Chung Ryong;Lee, Dae Sik;Lee, Yong Kwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.2
    • /
    • pp.63-71
    • /
    • 2013
  • WAVE(Wireless Access for Vehicular Environment) System is a communication technology to monitor system failure and vehicle functions and management services to prevent possible incidents of driving a vehicle. In this paper, we have designed and implemented the mutual message processing through parameter between WME management module that manages WAVE system and MLME that manages the upper layer MAC(Media Access Control) module. Also, in order to verify the validity, we have carried out experiments to compare the speed of data processing by dividing data of 1Mbyte, 2Mbyte, 3Mbyte into the packets of 2KByte and 4KByte. Experiments data processing speed of 2KByte packet were shown about 173.62ms in 1MByte, 2MByte about 352.61ms, 3MByte about 550.13ms and, data processing speed of 4KByte packet, 1MByte approximately 87.56ms, 2MByte about 177.94ms, 3MByte about 277.18ms. Therefore, in WAVE system, the mutual messages processing through the parameters between WME and MLME module can be utilized in the various service of ITS(Intelligent Transportation Systems) depending on the speed of data processing.

Performance Analysis of IEEE 802.15.4a System in UWB Intra Vehicle Communications Channel (UWB 차량통신 채널에서 IEEE 802.15.4a 시스템의 성능 분석)

  • Khuandaga, Gulmira;Lee, Cheon-Hee;Kim, Baek-Hyun;Kwak, Kyung-Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.1
    • /
    • pp.53-65
    • /
    • 2012
  • Recently wireless intra-vehicle communication has received a great interest from the automotive industry and ultra wideband (UWB) technology is considered as one of the potential candidate for this system. Many research works have been done on the measurement and modeling of intra-vehicle communication channel. However, very little work has been reported for the performance analysis of various PHY layer methods under the intra-vehicle communication environment. This paper is to study IEEE 802.15.4a standard in intra-vehicle channel and to evaluate its performance. Channel model in chassis and engine compartment is considered for evaluation. Through simulation BER performance of system with different receiver structures is analyzed.

LOS(line-of-sight) Stabilization Control of OTM(on-the-move) Antenna Driven by Geared Flexible Transmission Mechanism (기어와 유연축을 갖는 구동계로 구동되는 OTM 안테나 시선의 안정화 제어)

  • Kang, Min-Sig;Yoon, Wo-Hyun;Lee, Jong-Bee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.951-959
    • /
    • 2011
  • In this study, an OTM(on-the-move) antenna which is mounted on ground vehicles and is used for mobile communication between vehicle and satellite while moving was addressed. Since LOS(line-of-sight) of antenna should direct satellite consistently while vehicle moving to guarantee high satellite communication quality, active antenna LOS stabilization is a core technology for OTM antenna. Stabilization of a satellite tracking antenna which consists of 2-DOF gimbals, an elevation gimbal over an azimuth gimbal, was considered in this study. In consideration of driving mechanism which consists of gear train and flexible driving shafts, a two-mass-system dynamic model coupled with vehicle motion was presented. An internal PI-control loop + outer PI-control loop structure has been suggested in order to damp the torsional vibration and stabilize control system. The classical pole-placement method was applied to design control gains. In addition, a vehicle motion compensation control beside of the feedback control loop has been suggested to improve LOS stabilization performances. The feasibility of the proposed control design was verified along with some experimental results.

Edge-Based Tracking of an LED Traffic Light for a Road-to-Vehicle Visible Light Communication System

  • Premachandra, H. Chinthaka N.;Yendo, Tomohiro;Tehrani, Mehrdad Panahpour;Yamazato, Takaya;Fujii, Toshiaki;Tanimoto, Masayuki;Kimura, Yoshikatsu
    • Journal of Broadcast Engineering
    • /
    • v.14 no.4
    • /
    • pp.475-487
    • /
    • 2009
  • We propose a visible light road-to-vehicle communication system at intersection as one of ITS technique. In this system, the communication between vehicle and a LED traffic light is approached using LED traffic light as a transmitter, and on-vehicle high-speed camera as a receiver. The LEDs in the transmitter are emitted in 500Hz and those emitting LEDs are captured by a high-speed camera for making communication. Here, the luminance value of each LED in the transmitter should be found for consecutive frames to achieve effective communication. For this purpose, first the transmitter should be identified, then it should be tracked for consecutive frames while the vehicle is moving, by processing the images from the high-speed camera. In our previous work, the transmitter was identified by getting the subtraction of two consecutive frames. In this paper, we mainly introduce an algorithm to track the identified transmitter in consecutive frames. Experimental results using appropriate images showed the effectiveness of the proposal.

Road Surface Data Collection and Analysis using A2B Communication in Vehicles from Bearings and Deep Learning Research

  • Young-Min KIM;Jae-Yong HWANG;Sun-Kyoung KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.4
    • /
    • pp.21-27
    • /
    • 2023
  • This paper discusses a deep learning-based road surface analysis system that collects data by installing vibration sensors on the 4-axis wheel bearings of a vehicle, analyzes the data, and appropriately classifies the characteristics of the current driving road surface for use in the vehicle's control system. The data used for road surface analysis is real-time large-capacity data, with 48K samples per second, and the A2B protocol, which is used for large-capacity real-time data communication in modern vehicles, was used to collect the data. CAN and CAN-FD commonly used in vehicle communication, are unable to perform real-time road surface analysis due to bandwidth limitations. By using A2B communication, data was collected at a maximum bandwidth for real-time analysis, requiring a minimum of 24K samples/sec for evaluation. Based on the data collected for real-time analysis, performance was assessed using deep learning models such as LSTM, GRU, and RNN. The results showed similar road surface classification performance across all models. It was also observed that the quality of data used during the training process had an impact on the performance of each model.