• Title/Summary/Keyword: Vehicle Antenna

Search Result 211, Processing Time 0.022 seconds

A Study On the Design of a Servo Controller for a Tracking Antenna System between Moving Vehicles by the Fuzzy-PID Controller (Fuzzy-PID 제어기를 이용한 이동체간 추적 안테나 시스템의 서보제어기 설계에 관한 연구)

  • Kim, Jong-Kwon;Cho, Kyeum-Rae;Lee, Dae-Woo;Jang, Chul-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • For continuous communication between moving vehicles such as satellites and unmanned aerial vehicles, an antenna system having at least more than 2-axes is needed. When the antenna is mounted on a moving vehicle such as ground vehicle, ship and so on, a stabilization and tracking system must be equipped to compensate the roll, pitch and yaw motion of the vehicle. The performance of stabilization and tracking system mainly depends on the servo control system that driving the antenna pedestal. Therefore, in this paper, a Fuzzy-PID controller for a stabilization and tracking system of a 2-axes antenna was designed and the performance was verified. To verify the verification of designed servo control system, the performance of the conventional PID controller and that of the Fuzzy-PID controller, designed by the same PID control gains, was compared.

  • PDF

Compact S-Band Antenna Hat for RF Compatibility Testing of Launch Vehicle (발사체의 RF 호환성 시험을 위한 소형 S-밴드 안테나 햇)

  • Kim, Sung-Wan;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.148-157
    • /
    • 2015
  • In this paper, we propose a compact antenna hat to perform RF compatibility testing efficiently between the launch vehicle and ground stations. The proposed structure implements a small size and low loss using the conductive shield instead of the conventional RF absorber. The S-band antenna hat, which is fabricated for an inverted-F onboard antenna with the size of $74mm{\times}13mm{\times}16mm$, has the small enclosure of $88mm{\times}35mm{\times}44mm$, the return loss of 25.6 dB, the insertion loss of 0.26 dB, and the leakage loss of 49.4 dB at the center frequency of 2.25 GHz. The simulated and measured results show a good agreement.

A Directivity Design of Loop Type Dipole Antenna for RFID Tag (RFID 태그용 루프형 다이폴 안테나의 지향성 설계)

  • Kim, Min-Seong;Min, Kyeong-Sik
    • Journal of Navigation and Port Research
    • /
    • v.32 no.10
    • /
    • pp.805-811
    • /
    • 2008
  • This paper presents a design of RFID(Radio Frequency Identification) tag antenna which is available for a vehicle's side mirror and directivity characteristics by mr body. The proposed Tag antenna is designed symmetrical structure to improve the broad bandwidth characteristic and the readable range. A proposed tag antenna($30\;mm{\times}24\;mm{\times}1\;mm$) has resonant frequency at 910 MHz and bandwidth is 780 MHz ($540\;MHz{\sim}1320\;MHz$). The chip impedance is the 16 - $j131\;{\Omega}$ and the complex conjugate impedance of commercial chip has been used for tag antenna design. In order to evaluate effects of tag antenna for side view mirror's permittivity as well as car body(conductor), radiation pattern characteristics and readable range have been calculated and measured. The optimized position for a vehicle's RFID system has been observed in the inside of a side mirror and the calculated results show good agreement with the measured results.

Design and Analysis of Composite Reflector of High Stable Deployable Antenna for Satellite (위성용 전개형 고안정 반사판 안테나 복합재 주반사판 설계 및 해석)

  • Dong-Geon Kim;Kyung-Rae Koo;Hyun-Guk Kim;Sung-Chan Song;Seong-Cheol Kwon;Jae-Hyuk Lim;Young-Bae Kim
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.230-240
    • /
    • 2023
  • The deployable reflector antenna consists of 24 unit main reflectors, and is mounted on a launch vehicle in a folded state. This satellite reaches the operating orbit and the antenna of satellite is deployed, and performs a mission. The deployable reflector antenna has the advantage of reduce the storage volume of payload of launch vehicle, allowing large space structures to be mounted in the limited storage space of the launch vehicle. In this paper, structural analysis was performed on the main reflector constituting the deployable reflector antenna, and through this, the initial conceptual design was performed. Lightweight composite main reflector was designed by applying a carbon fiber composite and honeycomb core. The laminate pattern and shape were selected as design variables and a design that satisfies the operation conditions was derived. Then, the performance of the lightweight composite reflector antenna was analyzed by performing detailed structural analysis on modal analysis, quasi-static, thermal gradient, and dynamic behavior.

A Ultra-wide Band Half-wavelength Loop Antenna using Self-complementary Principle for UAV Applications (자기상보 원리를 이용한 UAV 탑재용 초광대역 반파장 루프 안테나)

  • Yoon, Myung-Han;Kim, Jun-Won;Woo, Jong-Myung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.213-219
    • /
    • 2015
  • In this paper, we present a low-profile ultra-wide band half-wavelength loop antenna for UAV (Unmanned Aerial Vehicle) applications. The proposed antenna has an ultra-wide band using self-complementary principle. Also, the ground was located between radiators for reducing height of the antenna using image theory. Dimensions of proposed antenna have $0.20{\lambda}_L{\times}0.14{\lambda}_L{\times}0.16{\lambda}_L$ (${\lambda}_L$ is the free-space wavelength at lowest frequency). Measured -10 dB bandwidth was ultra-wide band as more than 50 : 1(over 0.3 GHz ~15 GHz). The radiation patterns of the antenna was omnidirectional like monopole antennas. Moreover, we tried the antenna mounted on under a fuselage of a scaled UAV. As a result, the proposed antenna on the UAV maintained ultra-wide band and omnidirectional radiation patterns at all frequencies.

Dual-band Planar Monopole Antenna for Autonomous Vehicle (자율주행자동차를 위한 이중대역 평판 모노폴 안테나)

  • Yoon, Yonghyun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.343-348
    • /
    • 2019
  • In this paper, a dual-band antenna is proposed for the autonomous vehicle as well as omni-directional. The proposed antenna operates in the 4G/LTE band (1,710~2,170MHz) and 5G/NR band (3,400~3,700MHz). In order to obtain the dual-band operation, the planar monopole antenna is proposed as the novel structure with single port of the 50ohm. To give the properties of dual-band, an additional antenna element with slit was added to the planar monopole antenna, and then a structural adjustment parameter was optimized for achieving the target performance in bands. The planar monopole antenna in the LTE band acts as the coupled feed for the added parasitic radiator in the 5G NR band. The proposed antenna has $38.5{\times}36.0{\times}1.0[mm^3]$ on a ground with diameter of 96mm. From the fabrication and measurement results, the impedance bandwidth (VSWR<2) of the proposed antenna covers 1,480~2,260MHz (LTE band: 1,710~2,170MHz) and 3,310~3,930MHz (5G NR band: 3,400~3,700MHz). The proposed planar monopole antenna also obtained the measured gain and radiation pattern of omni-directional radiation pattern in the anechoic chamber.

Monopulse Tracking Performance of a Satcom Antenna on a Moving Platform

  • Cho, Gyuhan;Kim, Gwang Tae
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.120-125
    • /
    • 2017
  • A satellite communication (Satcom) antenna mounted on a moving platform provides a controlled heading that enables a geosynchronous satellite to communicate with the ground. A monopulse tracking method is effective for antenna control on a vehicle when it vibrates severely. However, this method has unexpected obstacles and its control performance is insufficient. To improve its control performance, the control command and monopulse error, the signal delay, and the radome effect are evaluated through tests. The authors then propose a method to transform the antenna error from 3D coordinates to 2D antenna coordinates. As a result, the antenna control performance is improved. As indicated in this study, examining antenna systems using the monopulse method on moving platforms is possible by understanding the antenna test process.

Multi-band Micropole Antenna Design Using Impedance Change (임피던스 변화를 이용한 다중대역 마이크로폴 안테나 설계)

  • Park, Jaehong;Kim, Hyunhee;Lee, Kyungchang;Hwang, Yeongyeun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.110-115
    • /
    • 2021
  • A multi-band, compact, and complex vehicle roof antenna has become important in terms of car exterior design and multi-functions which include Radio, DAB/DMB, SXM, GNSS, Telematics, and V2X. In this paper, we propose a compact multi-band V2X pole-type roof antenna. Using impedance change characteristic, a single pole antenna which has multiband such as radio, DAB/DMB, telematics, and V2X band is proposed. With two patch antennas for GNSS and SXM, the dimension of a multiband roof antenna is 131x63x37mm only.

Effect Analysis of Surface-Icing on the UHF-band Antenna for Space Launch Vehicle (우주발사체용 UHF-대역 안테나의 표면결빙에 의한 영향분석)

  • Hwang, Soosul;Oh, Changyul;Ma, Keunsu
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.104-108
    • /
    • 2014
  • This paper represents the effect analysis results of surface-Icing on the UHF-band antenna for Space Launch Vehicle. In order to obtain structural model of the surface-icing, Relative Permittivity of ice at $-180^{\circ}C$ was extracted. Using this surface-Icing model, UHF-band antenna simulation and comparative analysis about the antenna parameters such as resonance frequency, reflection loss and radiation pattern were performed for each case of with or without surface-icing. Simulation results show that resonance frequency is shifted out of operation frequency due to the additional ice permittivity. This resonance frequency changes cause severe affect to the antenna performance and its radiation pattern.

Linkbudget Analysis of Palau Tracking Station Using Antenna Gain of Launch Vehicle (발사체 안테나 이득패턴을 이용한 팔라우추적소 링크버짓 분석)

  • Kim, Chun-Won;Kwon, Soon-Ho;Lee, Tae-Jin;Kim, Dong-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.591-597
    • /
    • 2022
  • In this paper, we analyzed linkbudget with comparing actual received level of telemetry system at Palau Tracking Station. Because Palau Tracking Station participated in the launch mission for the first time and lack of verification tests for antenna tracking and signal reception performance, we analyzed the linkbudget more accurately by predicting transmit antenna polarization gain according to the trajectory and attitude of launch vehicle. The analysis results were used to analyze signal reception range, antenna operation angle and LHCP/RHCP received level. The actual received level of the antenna was similar to the linkbudget result as a result of the launch mission operation.