• 제목/요약/키워드: Vehicle

검색결과 20,388건 처리시간 0.047초

후방추돌평가 시험을 위한 가상환경 시나리오 개발연구 (A study on scenario in virtual environment for test about rear-end collision)

  • 백우경;김배영;김시우;정충민;송종원;서명원
    • 자동차안전학회지
    • /
    • 제3권2호
    • /
    • pp.17-21
    • /
    • 2011
  • Vehicle safety device such as active headrest and rear detection system has been developing as people are interested about rear end collision more than head on or than front. However, there is no any standard or criterion in order to evaluate vehicle safety device for rear end collision. Also there is no test protocol about rear end collision in vehicle experiment. Therefore, this research developed scenario for experiment about rear end collision in vehicle experiment. Also this research evaluated dangerousness about vehicle test and fitness about re-enacting rear end collision using scenario developed using commercial software (PC-Crash) which can re-enact vehicle collision in virtual vehicle experiment. Scenario developed according to statistics from National Highway Traffic Safety Administration and German In-Depth Accident Study. Scenario has twelve cases which composed of Re-LVS (Rear end Leading Vehicle Stop), Re-LVM (Rear end Lead Vehicle Moving) and scenario for evaluation about malfunction of active headrest.

Dynamic analysis of metro vehicle traveling on a high-pier viaduct under crosswind in Chongqing

  • Zhang, Yunfei;Li, Jun;Chen, Zhaowei;Xu, Xiangyang
    • Wind and Structures
    • /
    • 제29권5호
    • /
    • pp.299-312
    • /
    • 2019
  • Due to the rugged terrain, metro lines in mountain city across numerous wide rivers and deep valleys, resulting in instability of high-pier bridge and insecurity of metro train under crosswind. Compared with the conditions of no-wind, crosswind triggers severer vibration of the dynamic system; compared with the short-pier viaduct, the high-pier viaduct has worse stability under crosswind. For these reasons, the running safety of the metro vehicle traveling on a high-pier viaduct under crosswind is analyzed to ensure the safe operation in metro lines in mountain cities. In this paper, a dynamic model of the metro vehicle-track-bridge system under crosswind is established, in which crosswind loads model considering the condition of wind zone are built. After that, the evaluation indices and the calculation parameters have been selected, moreover, the basic characteristics of the dynamic system with high-pier under crosswind are analyzed. On this basis, the response varies with vehicle speed and wind speed are calculated, then the corresponding safety zone is determined. The results indicate that, crosswind triggers drastic vibration to the metro vehicle and high-pier viaduct, which in turn causes running instability of the vehicle. The corresponding safety zone for metro vehicle traveling on the high-pier is proposed, and the metro traffic on the high-pier bridge under crosswind should not exceed the corresponding limited vehicle speed to ensure the running safety.

자율주행 안전성 평가 시나리오 개발 및 검증 (Development and Validation of Safety Performance Evaluation Scenarios of Autonomous Vehicle)

  • 채흥석;정용환;이명수;신재곤;이경수
    • 자동차안전학회지
    • /
    • 제9권1호
    • /
    • pp.6-12
    • /
    • 2017
  • Regulation for the testing and operation of automated vehicles on public roadways has been recently developed all over the world. For example, the licensing standards and the evaluation technology for automated vehicles have been proposed in California, Nevada and EU. But specific safety evaluation scenarios for automated vehicles have not been proposed yet. This paper presents safety evaluation scenarios for extraordinary service permission of automated vehicles on highways. A total of seven scenarios are selected in consideration of safety priority and real traffic situation. Six scenarios are relevant with lane keeping and one scenario is relevant with lane change. All scenarios are developed based on existing ADAS evaluation scenarios and repeated simulation of automated vehicle algorithm. Safety evaluation factors as well as scenarios are developed. The safety factors are based on existing ADAS ISO requirements, ADAS safety factors and current traffic regulations. For the scenarios, a hunter vehicle is needed in addition to automated vehicle evaluated. The hunter vehicle performs multiple roles like preceding vehicle, cut-in vehicle and so on. The hunter vehicle is also automated vehicle equipped with high performance GPS, radar and Lidar. All the scenarios can be implemented by driving a lap on a KATRI ITS test track. These scenarios and safety evaluation factors are investigated via both a computer simulation and an experimental vehicle test on the test track. The experimental vehicle test was conducted with two automated vehicles, which are the evaluated vehicle and the hunter vehicle.

A Pilot Study on the Muscle Activities in Step Input Test as an Indicator of the Vehicle Characteristics

  • Kong, Yong-Ku;Jung, Myung-Chul;Lee, In-Seok;Hyun, Young-Jin;Kim, Chang-Su;Seo, Min-Tae
    • 대한인간공학회지
    • /
    • 제32권3호
    • /
    • pp.217-227
    • /
    • 2013
  • Objective: The purpose of this study was to analyze 'response time', 'peak response time' and 'overshoot value' for each muscle by applying the EMG signal to the vehicle response in ISO 7401 and to quantify the response of the driver according to vehicle characteristics by comparing vehicle characteristics and muscle responses of the driver. Background: The Open-loop test defined in international standards ISO 7401 is the only method for evaluating the performance of the vehicle. However, this test was focused only on mechanical responses, not driver's ones. Method: One skilled male driver(22 yrs. experience) was participated in this experiment to measure muscle activities of the driver in transient state. Then the seven muscle signals were applied to calculate 'response time', 'peak response time', and 'overshoot value'. Results: In the analyses of the EMG data, the effects of vehicle type and muscle were statistically significant on the 'response time' and 'peak response time'. Also, the effects of vehicle type, muscle, and lateral acceleration level were statistically significant on the 'overshoot value' in this study. According to the analyses of the vehicle motion data, vehicle motion variable(LatAcc, Roll, YawVel) was statistically significant on the 'response time' and vehicle type, vehicle motion variable, and lateral acceleration level were statistically significant on the 'peak response time', respectively. Conclusion: In the analyses of the 'response time' and 'overshoot value', the data of muscle activities(EMGs) was better index that could evaluate the vehicle characteristic and performance than the data of vehicle motion. In case of peak response time, both EMG and vehicle motion data were good index. Application: The EMGs data from a driver might be applicable as index for evaluation of various vehicle performances based on this study.

차량 운동에 따른 GMLAN 차량 속도와 실제 차량 속도 비교 (A COMPARATIVE STUDY BETWEEN GMLAN SPEED AND GPS REPORTED VEHICLE SPEED BY VEHICLE MANEUVER)

  • 원유진;김진원;강성기
    • 자동차안전학회지
    • /
    • 제5권1호
    • /
    • pp.16-24
    • /
    • 2013
  • Some GM (General Motors) vehicles are using a GMLAN (General Motors Local Area Network) communication protocol for control and diagnostics. The airbag control module uses vehicle speed information from the GMLAN to record the vehicle speed as pre-crash information. In order to use the vehicle speed information for crash reconstruction purposes, it helps to be able to understand the accuracy of the data. The actual vehicle speed is not expected to be the same as the GMLAN indicated speed in some situations like a spin or if there is hard braking. This paper compares the actual vehicle speed and vehicle speed information during specific vehicle maneuvers. Actual vehicle speed is calculated from a GPS sensor, while GMLAN vehicle speed is calculated from transmission output sensor by the Engine control module (ECM). Vehicle maneuvers defined as Mode #1, Mode #2, Mode #3. The Mode #1 maneuver simulates wheel lock-up and skidding f by hard-braking at a specific speed. The Mode #2 maneuver simulates a 90degree turn using a J-turn maneuver at a specific speed. The Mode#3 maneuver simulates a 180 degree turn using a spin type of maneuver at a specific speed. The study then compares the GMLAN speed and GPS speed to see what speed difference exists between them. The results of this paper are applicable to GM vehicles only. This paper catalogs the performance and limitations of two vehicles as useful reference for crash reconstructions where there is a need to understand the speed indicated in the pre-crash section of the SDM data.

정차상태 시험 결과를 이용한 차량동특성 해석 모델의 검증 (Validation of the vehicle dynamic model for the static vehicle testing)

  • 박길배;성재호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.317-325
    • /
    • 2011
  • Vehicle model validation for the static vehicle testing has been done by comparison of the simulation results and test results and the parameters of the vehicle model to be used in the simulation have been adjusted to reflect the measured behaviour. The vehicle model fort the simulation should be validated by suitable tests and/or practical experience. The static vehicle test used to validate the vehicle model are the weight measurement, the wheel offloading test, the bogie rotational resistance test and the sway test. Finally, the computer simulation model has been validated and using the validated vehicle model the acceptance of the vehicle safety of the resistance to flange climbing derailment at low speed can be examined.

  • PDF

VDC 장착 차량의 기동 특성에 관한 연구 (A Study on the Performance Characteristics of the VDC Vehicle)

  • 김태기;박윤기;서명원
    • 한국자동차공학회논문집
    • /
    • 제7권9호
    • /
    • pp.146-157
    • /
    • 1999
  • Safety systems for road vehicles have been rapidly developed in recent years. Especially, the VDC(Vehicle dynamics Control) system is a new active safety system for road vehicles which controls its dynamic vehicle motion in emergency situations . In the case of configuring the VDC system by utilizing the ABS(Anti-lock Brake System), the role of a control logic which directly influences the vehicle motion is very important. In this study the performance of the VDC vehicle was compared to the performances of the CBS (Conventional Brake system )and ABS vehicle. For various driving conditions , the simulation of vehicle dynamics with known VDC control logics was performed. Analysis results showed the VDC vehicle could stably perform even on the road of low coefficient of friction. In addition it was shown that the basic control logic for the VDC system could outstandingly improve driving stability in the case of braking as well as constant speed cruising.

  • PDF

Development of Vehicle Oriented Black Box System Based on U-Healthcare and Human-Free Guard Functions

  • Lee, Dong-Myung
    • 공학교육연구
    • /
    • 제13권5호
    • /
    • pp.36-40
    • /
    • 2010
  • The vehicle oriented block box system based on the u-healthcare and the human-free guard functions is developed in this paper. We also suggested the design philosophies, ideas, and analyzed the performance of the suggested system. The developed vehicle oriented black box system has some characteristics such as; 1) detects the dangerous situation by ultrasonic sensor in advance, and stores the situation information of the neighborhood of the vehicle to the imbedded SD memory card if the dangerous situation may be occurred in the parked vehicle; 2) detects the present location and speed information of the vehicle by GPS receiver and 3-axes acceleration sensor, and stores the information to the SD memory card periodically if the vehicle is running; 3) measures the dioxide carbon in the vehicle inside using $CO_2$ sensor, and forces the ventilation motor of the vehicle to operate and maintains the driver's health if the measured level is more than standard health requirements; 4) provides the stored vehicle's operating information to the driver by GUI (Graphical User Interface) based touch LCD monitor.

  • PDF

차량 모델의 복잡성이 차량동력학 해석에 미치는 영향 : 모델의 비교 및 검증 (An Effect of the Complexity in Vehicle Dynamic Models on the Analysis of Vehicle Dynamic Behaviors: Model Comparison and Validation)

  • 배상우;윤중락;이장무;탁태오
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.267-278
    • /
    • 2000
  • Vehicle dynamic models in handing and stability analysis are divided into three groups: bicycle model, roll axis model and full vehicle model. Bicycle model is a simple linear model, which hag two wheels with load transfer being ignored. Roll axis model treats left and right wheels independently. In this model, load transfer has a great effect on nonlinearity of tire model. Effects of suspension system can be analyzed by using full vehicle model, which is included suspension stroke motions. In this paper, these models are validated and compared through comparison with road test, and the effects of suspension kinematics and compliance characteristics on vehicle motion are analyzed. In handling and stability analysis, roll axis model can simulate the real vehicle motion more accurately than full vehicle model. Compliance steer has a significant effect, but the effect of suspension kinematics is negligible.

  • PDF

무인운반차 기반 물류시스템에서의 이동시간 분석 (Vehicle Travel Time Analysis in Automated Guided Vehicle Systems)

  • 구평회;장재진
    • 한국경영과학회지
    • /
    • 제26권1호
    • /
    • pp.97-108
    • /
    • 2001
  • Design and evaluation of AGV-based material handling systems are very complicated due to the randomness and the large number of variables involved Vehicle travel time is a key parameter for designing and evaluating AGV systems. Although loaded travel time is relatively easy to estimate, determination of empty vehicle travel time is difficult due to the inherent randomness of material handling systems. Most previous studies assume that the empty vehicle travel time is the same as the loaded travel time or assume very specific environments. This paper presents new vehicle travel time models for AGV-based material transport systems. The research effort is focused on the estimation of empty vehicle travel time under various vehicle dispatching policies. Simulation experiments are used to verify the proposed travel time models.

  • PDF