• Title/Summary/Keyword: Vehicle's Motion

Search Result 293, Processing Time 0.033 seconds

Design of Robust Adaptive Controllers for Longitudinal Motion of Vehicles (직진 주행 차량의 강인 적응제어기 설계)

  • 김동헌;김응석;김홍필;양해원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.113-113
    • /
    • 2000
  • A robust adaptive technique for the longitudinal control of a platoon of automated vehicles is presented. A nonlinear model is used to represent the vehicle dynamics of each vehicle within the platoon. The external disturbance such as wind gust and a disturbance term due to engine transmission variations and so on are considered. The state observer is used to avoid direct measurement of the relative velocity or acceleration between the controlled and leading vehicles or the controlled vehicle's acceleration. It is shown that platoon stability can be recovered in operation even if a speed dependent spacing policy is adopted, which incorporates a constant time headway in addition to the constant distance. The simulation results demonstrate excellent tracking even in the presence of disturbances.

  • PDF

Steady State Performance Analysis of Five-mode Hybrid Power Transmission Systems (5-모드 하이브리드 동력전달 시스템의 정상상태 성능분석)

  • Lim, Won-Sik;Kim, Nam-Woong;Choi, Wan-Mug;Park, Sung-Cheon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • The core of the automotive industry's strategy to handle the climate change can be explained as the development and distribution of the vehicles with high fuel efficiencies and low emission. Clean Diesel, hydrogen fuel cell, electric, and especially hybrid power-train vehicles have been actively studied. This paper dynamically analyzes the performance of a hybrid system's five driving modes. The research subject consists of one engine, two electric motors, two simple planetary gears, and one compound planetary gears with five clutches. To define the steady state equation of the system, interaction formulas of five driving modes are introduced with motion variables and torque variables. These formulas are then used to analyze the speeds, torques, and power flows of each mode.

Effects of Guideway's Vibration Characteristics on Dynamics of a Maglev Vehicle (가이드웨이 진동 특성이 자기부상열차 동특성에 미치는 영향)

  • Han, Hyung-Suk;Yim, Bong-Hyuk;Lee, Nam-Jin;Hur, Young-Chul;Kwon, Jung-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.299-306
    • /
    • 2008
  • The electromagnet in Maglev vehicles controls the voltage in its winding to maintain the air gap, a clearance between the electromagnet and guideway, within an allowable deviation, with strongly interacting with the flexible guideway. Thus, the vibration characteristics of guideway plays important role in dynamics of Maglev vehicles using electromagnet as an active suspension system. The effects of the guideway's vibrational characteristics on dynamics of the Maglev vehicle UTM-01 are analyzed. The coupled equations of motion of the vehicle/guideway with 3 DOFs are derived. Eigenvalues are calculated and frequency response analysis is also performed for a clear understanding of the dynamic characteristics due to guideway vibration characteristics. To verify the results, tests of the urban Mgalev vehicle UTM-02 are carried out. It is recommended that the natural frequency of the guideway be minimized and its damping ratio in the Maglev vehicle with a 5-states feedback control law as a levitation control law.

Statistical analysis and probabilistic modeling of WIM monitoring data of an instrumented arch bridge

  • Ye, X.W.;Su, Y.H.;Xi, P.S.;Chen, B.;Han, J.P.
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.1087-1105
    • /
    • 2016
  • Traffic load and volume is one of the most important physical quantities for bridge safety evaluation and maintenance strategies formulation. This paper aims to conduct the statistical analysis of traffic volume information and the multimodal modeling of gross vehicle weight (GVW) based on the monitoring data obtained from the weigh-in-motion (WIM) system instrumented on the arch Jiubao Bridge located in Hangzhou, China. A genetic algorithm (GA)-based mixture parameter estimation approach is developed for derivation of the unknown mixture parameters in mixed distribution models. The statistical analysis of one-year WIM data is firstly performed according to the vehicle type, single axle weight, and GVW. The probability density function (PDF) and cumulative distribution function (CDF) of the GVW data of selected vehicle types are then formulated by use of three kinds of finite mixed distributions (normal, lognormal and Weibull). The mixture parameters are determined by use of the proposed GA-based method. The results indicate that the stochastic properties of the GVW data acquired from the field-instrumented WIM sensors are effectively characterized by the method of finite mixture distributions in conjunction with the proposed GA-based mixture parameter identification algorithm. Moreover, it is revealed that the Weibull mixture distribution is relatively superior in modeling of the WIM data on the basis of the calculated Akaike's information criterion (AIC) values.

The Fuzzy Steering Control Using a Slope Direction Estimation Method for Small Unmanned Ground Vehicle (경사방향 추정 기법을 이용한 소형로봇의 퍼지 조향 제어)

  • Lee, Sang Hoon;Huh, Jin Wook;Kang, Sincheon;Lee, Myung Chun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.721-728
    • /
    • 2012
  • The tracked SUGVs(Small Unmanned Ground Vehicles) are frequently operated in the narrow slope such as stairs and trails. But due to the nature of the tracked vehicle which is steered using friction between the track and the ground and the limited field of view of driving cameras mounted on the lower position, it is not easy for SUGVs to trace narrow slopes. To properly trace inclined narrows, it is very important for SUGVs to keep it's heading direction to the slope. As a matter of factor, no roll value control of a SUGV can makes it's heading being located in the direction of the slope in general terrains. But, the problem is that we cannot directly control roll motion for SUGV. Instead we can control yaw motion. In this paper, a new slope driving method that enables the vehicle trace the narrow slopes with IMU sensor usually mounted in the SUGV is suggested which including an estimation technique of the desired yaw angle corresponding to zero roll angle. In addition, a fuzzy steering controller robust to changes in driving speed and the stair geometry is designed to simulate narrow slope driving with the suggested method. It is shown that the suggested method is quite effective through the simulation.

Real-Time Vehicle Mass Estimator for Active Rollover Prevention Systems (차량 전복 방지 장치를 위한 실시간 차량 질량 추정 시스템)

  • Han, Kwang-Jin;Kim, In-Keun;Kim, Seung-Ki;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.673-679
    • /
    • 2012
  • Vehicle rollover is a serious kind of accident, particularly for sport utility vehicles, and its occurrence can be minimized by utilizing active rollover prevention systems. The performance of these protection systems is very sensitive to vehicle inertial parameters such as the vehicle's mass and center of mass. These parameters vary with the number of passengers and in different load situations. In this paper, a unified method for vehicle mass estimation is proposed that takes into account the available driving conditions. Three estimation algorithms are developed based on longitudinal, lateral, and vertical vehicle motion, respectively. Then, the three algorithms are combined to extract information on the vehicle's mass during arbitrary vehicle maneuvering. The performance of the proposed vehicle mass estimation method is demonstrated through real-time experiments.

Test for Local Structural Identifiability of Linear Equations of Motion for Submergibles (몰수체 선형 운동방정식의 지역 구조 가식별성 조사)

  • Chan-Ki Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.1
    • /
    • pp.15-21
    • /
    • 1999
  • In this paper, the issue of local structural identifiability of linear equations of motion with non-linear parametrizations is discussed. The test method is resented that provides analytical expressions for information matrices of which the rack determines identifiability. And this method is applied to investigate local structural identifiability of linear equations of motion for a submergible vehicle. As a result, it is showed that with given parameters, the linear equations of motion do not satisfy the definition of local identifiabiliy according Glover & Willems.

  • PDF

Evaluation of Servo Press Slide Motion for Springback Reduction of High Strength Steel (고장력강판의 스프링백 저감을 위한 서보프레스 슬라이드모션 평가)

  • Song, J.S.;Youn, K.T.;Park, C.D.;Heo, J.Y.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.5
    • /
    • pp.277-285
    • /
    • 2017
  • Vehicle weight reduction is a known strategy to improve fuel efficiency and strengthen exhaust gas regulation. The use of high strength steel can satisfy safety, efficiency, emission, manufacturability, durability, and cost requirements. However, springback of high strength steel results in undesired shape defects. Springback is one of the most important issues of high strength steel for many applications in an automobile. Servo press has various capabilities to improve defects, process conditions, and productivity problems when forming a high strength steel. Especially, servo press can be set to function with variable slide motion in a single operation. In this study, the effect of servo press slide motion on 980MPa high strength steel was investigated through U-bending test.

Optimization of Seat belt Load Limiter for Crashworthiness (안전벨트 충돌하중특성 최적화)

  • Seo, bo pil;Choi, sung chul;Kim, beom jung;Han, sung jun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.3 no.2
    • /
    • pp.5-10
    • /
    • 2011
  • Under the full frontal crash event, seatbelt system is the most typical and primary restraint device that prevents the second impact between an occupant and vehicle interior parts by limiting the forward motion of an occupant in the vehicle occupant packaging space. Today's restraint systems typically include the three-point seat belt with the pretensioner and the load limiter. A pretensioner preemptively tightens the seat belts removing any slack between a passenger and belt webbing which leads to early restraint of a passenger. After that a load limiter controls level of belt load by releasing the belt webbing to reduce occupant injurys. In this study, load characteristics of load limiters are optimized by the computer simulation with a MADYMO model for a frontal impact against the rigid wall at 56kph and then we suggest performance requirements. We derived optimum load characteristic from the results using four vehicle simulation models represented by the vehicle. Based on the results, we suggest the performance from the results of the second optimization using the simulation considering the design and the standardization. Finally, the performance requirements is verified by the sled tests including the load limiter device for the full vehicle condition.