• Title/Summary/Keyword: Vegetative Stages

Search Result 93, Processing Time 0.029 seconds

Appropriate Each Irrigation Quantity in Irrigation System Controlled by Drainage Level Sensor for Perlite Bag Culture of Tomato (배액전극제어법을 이용한 토마토 펄라이트 자루재배시 일회급액량 구명)

  • Kim, Sung-Eun;Sim, Sang-Youn;Lee, Sang-Don;Kim, Young-Shik
    • Horticultural Science & Technology
    • /
    • v.29 no.1
    • /
    • pp.36-42
    • /
    • 2011
  • This research was conducted to investigate the effects of irrigation quantity in irrigation management system controlled by drainage level sensors for perlite bag culture on the growth and yields of tomatoes during different growth stages. Tomato plants were irrigated with four selected methods; supplying small quantity (~70 mL) during entire growth (S-S), large quantity (~145 mL) during entire growth (L-L), small quantity before harvesting the first cluster fruits and large quantity after harvesting (S-L), and large quantity until harvesting the first cluster fruits and small quantity after harvesting (L-S). The irrigation quantity supplied in each time was gradually adjusted along with the ratios as the tomato crop grew during different growth stages. The growth of the tomato plants was unstable and slow during the entire cropping period when the plant was irrigated by small or large quantities (S-S or L-L). In L-S treatment, the growth phase of the tomato was changed from vegetative to generative growth on the basis of the plant development index when each irrigation quantity was changed. The L-S treatment exhibited the largest root volume and yields with stable drainage ratios. Therefore, the optimum irrigation quantity was determined as 145 mL before harvesting the first cluster fruits and 70 mL after harvesting.

Physiological Response, Fatty Acid Composition and Yield Component of Brassica napus L. under Short-term Waterlogging (단기간 침수처리 하에서 유채의 생리적 반응, 지방산 조성과 수확량)

  • Ku, Yang-Gyu;Park, Won;Bang, Jin-Ki;Jang, Young-Seok;Kim, Yong-Beom;Bae, Hyun-Jong;Suh, Mi-Chung;Ahn, Sung-Ju
    • Journal of Bio-Environment Control
    • /
    • v.18 no.2
    • /
    • pp.142-147
    • /
    • 2009
  • The effects of short-term waterlogging on physiological responses, fatty acid compositions and yield components of rapeseed at both the vegetative growth and the reproductive growth stages were assessed in this study. Waterlogged plants were treated for a period of 10 days at the vegetative growth stage and 4 days at the reproductive growth stage. The results show that photosynthesis and stomatal conductance at both the vegetative growth and the reproductive growth stage were significantly reduced during the waterlogging period and after the recovery period. When the plants were removed from water, photosynthesis and stomatal conductance progressively restored similar values to those of control plants within $2{\sim}3$ days. Fatty acid compositions were unaffected by waterlogging treatment. However, yield components (pod number and pod length) of the waterlogged treated plants at the reproductive growth stage were significantly reduced. These results suggest that short-term waterlogging may thus influence oilseed yield component.

Temperature Effects at Different Growth Stages on Grain Filling in Winter Barley (생육단계별 온도변화가 보리의 등숙에 미치는 영향)

  • 류용환;이창덕;하용웅
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.5
    • /
    • pp.425-431
    • /
    • 1993
  • Temperature effects on the grain filling of winter barley(CV. Gangbori, Olbori and Suwon 18) were studied in controlled environments under three day /night temperature regimes (viz. 25/20, 20/15 and 15/10$^{\circ}C ) and at three stages of development, viz. Vegetative, spike development and grain filling stages. Physiological maturity times to the temperature regimes were observed at 53 to 57 days after heading at 15/10$^{\circ}C , 43 to 45 days and 32 to 33 days at 20/15$^{\circ}C and 25/5$0^{\circ}C$, respectively. When plants were grown in 25/20$^{\circ}C during the spike development stages, the number of spikes per plant and grains per spike decreased by 39% and 41% respectively compared with 20/15$^{\circ}C of day / night temperature. The effect of high temperature on grain weight was not significant in all growth phases except post-anthesis where grain weight decreased by 30%. Therefore, the most important temperature effects were round during the spike development stages.

  • PDF

Growth Stages of Maize (Zea mays, L.) (옥수수의 형태적 변화와 생장 발육 단계)

  • 박병훈;양종성;강정훈
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.2
    • /
    • pp.185-191
    • /
    • 1981
  • The purpose of this paper is to define and describe a series of growth stages for maize. cv. MTC-l (early) and Suweon No. 19 (late) that are easily identifiable by both professional agronomists and farmers. Plants were grown at a density of 60cm row with plant spacing of 15cm at six different seeding times in 1980. Leaf development indices with ten grades (LDI) were identified and defined in accordance with the development of a leaf blade. Leaf appearance rate (LAR) was ca. 3 days and it was not influenced by the variety or seeding time. The elongation of the first internode above the ground level began in a month after emergence and it corresponded to the 8th or 9th leaf stage. Internodes elongated in regular sequence of node position. The morphological change of silks related closely with the development of kernel. The duration of generative development was not influenced by varieties and seeding time but that of vegetative growth was influenced. A new scheme for the maize which was made by the developed leaves, visible nodes above ground level, morphological change of silks and development of kernel was proposed.

  • PDF

Analysis of Growth Characteristics Using Plant Height and NDVI of Four Waxy Corn Varieties Based on UAV Imagery

  • Jeong, Chan-Hee;Park, Jong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.733-745
    • /
    • 2021
  • Although waxy corn varieties developed after the 1980s show differences depending on development stages and conditions, studies on the characteristics of waxy corn during the growth stage are rare. The subject of this study was a field survey and unmanned aerial vehicle (UAV) image acquisition of four waxy corn varieties cultivated in Idam-ri, Gammul-myeon, Goesan-gun, Korea. The study was conducted in four stages at intervals of two weeks after planting in 2019. The growth characteristics of each of the four varieties were analyzed using growth curves obtained based on field survey and UAV imagery data. The characteristics of each growth stage of the four varieties of corn, as assessed using normalized difference vegetation index (NDVI) and plant height (P.H.) values, were as follows. The growth model was identified as a model in which three-parameter logistic (3PL) curves reflect the growth characteristics of corn well. In particular, it was found that the variations in growth rate shown by P.H. and NDVI values clearly explain the differences between corn varieties. Among the four cultivars, growth and development first occurred at the early vegetative stage in Daehakchal, followed by Mibaek 2, Miheukchal, and finally Hwanggeummatchal. The variationsin P.H. and NDVI were achieved quickly and earlier in Daehakchal, followed by Mibaek 2, Hwanggeummatchal, and Miheukchal. It was confirmed that these results reflected the characteristics of the fast white-type varieties, while the black-type varieties were delayed, as in a previous study. These results reflect the resistance to lodging that affects the cultivation environment and the response characteristics to nutrients and moisture. It was confirmed that UAV accurately provides growth information that is very useful for analyzing the growth characteristics of each corn variety.

Direct Evidence of Endophyte (Neotyphodium coenophialum) Genotype Effect on Growth and Vertical Transmission of Endophyte in Tall Fescue (Schedonorus phoenix Scop.) Under Water Stress

  • Ju, Ho-Jong
    • The Plant Pathology Journal
    • /
    • v.27 no.3
    • /
    • pp.249-256
    • /
    • 2011
  • Tall fescue (Schedonorus phoenix Scop.) is resistant to abiotic and biotic stresses through a symbiotic relationship with Neotyphodium coenophialum. However, this endophyte has been considered detrimental since it produces toxic alkaloids to animals. It is vital to understand mutuality between these two to maximize positive impact of the endophyte on agri-ecosystem. Little research has been conducted on endophyte transmission mechanism in planta. To provide basic information related to endophyte transmission, an experiment was conducted to examine the effect of endophyte genotype and water stress on endophyte transmission by imposing soil moisture deficits at different stages of panicle development. There was water stress effect on endophyte frequency but not on concentration, whereas endophyte genotype significantly influenced endophyte concentration in pseudostem of tall fescue at boot stage. Reproductive tillers showed greater endophyte frequency and concentration. Endophyte frequency in florets or seeds depended on position within panicle. There was no drought effect on endophyte concentration, but showed the effect of endophyte genotype on endophyte concentration in florets and seeds. Overall endophyte concentration in seeds was higher. From this study, we may conclude that although water stress reduced endophyte frequency in vegetative tiller, water stress does not have effect on endophyte transmission, suggesting that drought is not an important factor controlling the endophyte transmission from plant to seed. Endophyte genotype and seed position in a panicle affected endophyte transmission, indicating that these two factors are involved in endophyte transmission and may determine seed transmission of endophyte in tall fescue.

Global Approaches to Identify Genes Involved during Infection Structure Formation in Rice Blast Fungus, Magnaporthe grisea

  • Park, Woo-Bong
    • The Plant Pathology Journal
    • /
    • v.19 no.1
    • /
    • pp.34-42
    • /
    • 2003
  • The ascomycete Magnaporthe grisea is a pathogen of rice blast and is known to form specialized infection structures called appressoria for successful infection into host cells. To understand the molecular mechanism underlying infection process, appressorium-related genes were identified through global approaches including EST sequencing, differential hybridization, and sup-pression subtractive hybridization. EST database was generated on >2,000 cDNA clones randomly selected from appressorium stage cDNA library. Large number of ESTs showed homology to known proteins possibly involved in infection-related cellular development (attachment, germination, appressorium formation, and colonization) of rice blast fungus. The 1051 ESTs showing significant homology to known genes were assigned to 11 functional categories. Differential hybridization and suppression subtractive hybridization were applied to identify genes showing an appressorium stage specific expression pattern. A number of genes were selected as up-regulated during appressorium formation compared with the vegetative growing stage. Clones from various cDNA libraries constructed in different developmental stages were arrayed on slide glass for further expression profiling study. functional characterization of genes identified from these global approaches may lead to a better understand-ing of the infection process of this devastating plant disease, and the development of novel ways to protect host plant.

Induction of Defense-Related Physiological and Antioxidant Enzyme Response against Powdery Mildew Disease in Okra (Abelmoschus esculentus L.) Plant by Using Chitosan and Potassium Salts

  • Soliman, Mona H.;El-Mohamedy, Riad S.R.
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.409-420
    • /
    • 2017
  • Foliar sprays of three plant resistance inducers, including chitosan (CH), potassium sorbate (PS) ($C_6H_7kO_2$), and potassium bicarbonates (PB) ($KHCO_3$), were used for resistance inducing against Erysiphe cichoracearum DC (powdery mildew) infecting okra plants. Experiments under green house and field conditions showed that, the powdery mildew disease severity was significantly reduced with all tested treatments of CH, PS, and PB in comparison with untreated control. CH at 0.5% and 0.75% (w/v) plus PS at 1.0% and 2.0% and/or PB at 2.0% or 3.0% recorded as the most effective treatments. Moreover, the highest values of vegetative studies and yield were observed with such treatments. CH and potassium salts treatments reflected many compounds of defense singles which leading to the activation power defense system in okra plant. The highest records of reduction in powdery mildew were accompanied with increasing in total phenolic, protein content and increased the activity of polyphenol oxidase, peroxidase, chitinase, and ${\beta}$-1,3-glucanase in okra plants. Meanwhile, single treatments of CH, PS, and PB at high concentration (0.75%, 2.0%, and/or 3.0%) caused considerable effects. Therefore, application of CH and potassium salts as natural and chemical inducers by foliar methods can be used to control of powdery mildew disease at early stages of growth and led to a maximum fruit yield in okra plants.

GzRUM1, Encoding an Ortholog of Human Retinoblastoma Binding Protein 2, is Required for Ascospore Development in Gibberella zeae

  • Kim, Hee-Kyoung;Lee, Yin-Won;Yun, Sung-Hwan
    • The Plant Pathology Journal
    • /
    • v.27 no.1
    • /
    • pp.20-25
    • /
    • 2011
  • Gibberella zeae (anamorph: Fusarium graminearum), a homothallic (self-ferile) ascomycete with ubiquitous geographic distribution, causes serious diseases in several cereal crops. Ascospores (sexual spores) produced by this fungal pathogen have been suggested as the main source of primary inoculum in disease development. Here, we report the function of a gene designated GzRUM1, which is essential for ascospore formation in G. zeae. The deduced product of GzRUM1 showed significant similarities to the human retinoblastoma (tumor suppressor) binding protein 2 and a transcriptional repressor, Rum1 in the corn smut fungus (Ustilago maydis). The transcript of GzRUM1 was detected during the both vegetative and sexual stages, but was more highly accumulated during the latter stage. In addition, no GzRUM1 transcript was detected in a G. zeae strain lacking a mating-type gene (MAT1-2), a master regulator for sexual development in G. zeae. Targeted deletion of GzRUM1 caused no dramatic changes in several traits except ascospore formation. The ${\Delta}$GzRUM1 strain produced perithecia (sexual fruit bodies) but not asci nor ascospores within them. This specific defect leading to an arrest in ascospore development suggests that GzRUM1, as Rum1 in U. maydis, functions as a transcriptional regulator during sexual reproduction in G. zeae.

Germination and Growth of Laminaria japonica (Phaeophyta) Microscopic Stages under Different Temperatures and Photon Irradiances (수온과 광량에 따른 다시마 초기 생활사의 발아와 성장)

  • KANG Rae-Seon;KOH Chul-Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.4
    • /
    • pp.438-443
    • /
    • 1999
  • Germination and growth of Laminaria japonica microscopic stages were investigated under crossed gradients of temperatures and irradiances, and the results related to the seasonal temperature regime in the southeastern coast of Korea. Germination rates of $70\~86\%$ were observed in the temperature range of $5\~20^{\circ}C$, however, at $25^{\circ}C$ no germination of meiospores was observed. The primary factor affecting germination rates at the temperature range of $5\~20^{\circ}C$ was irradiance: germination was significantly reduced at $150 {\mu}E{\cdot}m^{-2}{\cdot}s^{-1}$. Vegetative cell production of female gametophytes was highest at $20^{\circ}C$, but plants were not fertile at the temperature. In the temperature range of $5\~15^{\circ}C$, higher irradiance caused females to reduce cell production, but increased fertility. Cell production was also low at lower temperatures with increased fertility rates. Optimal growth temperature for microsporophytes was $10^{\circ}C$ and their growth rates were light-saturated at $70 {\mu}E{\cdot}m^{-2}{\cdot}s^{-1}$. We have concluded that meiospores released before July could develope to the young sporophytic stage in the southeastern coast of Korea which is off the southern limit of its geographical distribution. However, limiting factor in the development of natural sporophytic population in this region would be the upper temperature limit for the survival of young sporophytes, as water temperature at this area frequently exceeds $25^{\circ}C$ during the summer period.

  • PDF