• 제목/요약/키워드: Vegetation volume mapping

검색결과 2건 처리시간 0.015초

Mapping Vegetation Volume in Urban Environments by Fusing LiDAR and Multispectral Data

  • Jung, Jinha;Pijanowski, Bryan
    • 대한원격탐사학회지
    • /
    • 제28권6호
    • /
    • pp.661-670
    • /
    • 2012
  • Urban forests provide great ecosystem services to population in metropolitan areas even though they occupy little green space in a huge gray landscape. Unfortunately, urbanization inherently results in threatening the green infrastructure, and the recent urbanization trends drew great attention of scientists and policy makers on how to preserve or restore green infrastructure in metropolitan area. For this reason, mapping the spatial distribution of the green infrastructure is important in urban environments since the resulting map helps us identify hot green spots and set up long term plan on how to preserve or restore green infrastructure in urban environments. As a preliminary step for mapping green infrastructure utilizing multi-source remote sensing data in urban environments, the objective of this study is to map vegetation volume by fusing LiDAR and multispectral data in urban environments. Multispectral imageries are used to identify the two dimensional distribution of green infrastructure, while LiDAR data are utilized to characterize the vertical structure of the identified green structure. Vegetation volume was calculated over the metropolitan Chicago city area, and the vegetation volume was summarized over 16 NLCD classes. The experimental results indicated that vegetation volume varies greatly even in the same land cover class, and traditional land cover map based above ground biomass estimation approach may introduce bias in the estimation results.

시계열(時系列) AVHRR 위성자료(衛星資料)를 이용한 한반도 식생분포(植生分布) 구분(區分) (Vegetation Cover Type Mapping Over The Korean Peninsula Using Multitemporal AVHRR Data)

  • 이규성
    • 한국산림과학회지
    • /
    • 제83권4호
    • /
    • pp.441-449
    • /
    • 1994
  • 본 연구의 목적(目的)은 현재 한국에서 자료획득이 비교적 용이한 AVHRR 위성자료(衛星資料)를 이용하여, 한반도 전지역(全地域)을 대상으로 식물(植物)의 시기별(時期別) 변화유형(變化類型)을 분석하고, 이를 응용하여 주요식생(主要植生)의 분포를 구분하고자 한다. 1991년 1년동안 NOAA-11 위성에서 수신(受信)된 AVHRR 자료중 비교적 운량(雲量)이 적은 날을 택하여 총 27일분의 일별영상자료(日別映像資料)를 추출하였다. 일별영상자료는 먼저 광학적(光學的) 보정(補正)을 마친 후, 적색(赤色)파장대 및 근적외선(近赤外線)파장대에서의 반사특성(反射特性)을 조합한 식생지수(植生指數)(NDVI-Normalized Difference Vegetation Index)로 변환되었다. 구름으로 덮혀있는 지역의 식생지수는 식물이 존재하는 지역보다 상대적으로 낮은 값을 나타내므로, 구름제거를 위하여 4-5개의 일별식생지수자료(日別植生指數資料)를 중첩한 뒤 각 화소(畵素)지점의 식생지수중 최대치를 선택함으로써 구름의 영향이 최소화된 월별식생지수자료(月別植生指數資料)가 산출되었다. 월별식생지수자료는 식물 생장의 연중변화(年中變化)를 비교 분석하기에 용이하도록 비생장기간(非生長期間)까지 포함하여 2월, 3월, 5월, 8월, 9월, 그리고 11월까지 6개가 산출되었다. 식생별로 상이(相異)한 계절별 잎의 발달상태에 따라, 6개의 월별식생지수자료(月別植生指數資料)에 나타나는 식생지수의 변화특성을 이용하여 식생분류(植生分類)를 실시하였다. 사용된 자료의 광학적 해상력(解像力)을 고려하여 분류집단은 침엽수림, 활엽수림, 침활혼효림, 농지, 초지관목림, 그리고 도시지역으로 구분하였다. 컴퓨터분류방식은 식생지수(植生指數)의 변화유형이 비슷한 집단끼리 스스로 규합(糾合)되게 하는 무감독류집분류법(無監督類集分類法)(unsupervised clustering)을 채택하였다. 컴퓨터분류 결과를 기존의 산림자원조사자료(山林資源調査資料)와 비교한 결과 상당히 근접한 통계치를 보여주었고, 산림지역내(內)에서도 침엽수림, 활엽수림, 혼효림의 구분 또한 만족할만한 결과를 나타내고 있다. 넓은 지역을 대상으로 필요한 영상자료(映像資料)를 비교적 신속하고 용이하게 수신(受信)할 수 있고, 타(他) 위성자료에 비교하여 자료의 양이나 가격 측면에서 유리한 AVHRR자료는 한반도 규모에 상응하는 넓은 지역의 식생현황을 주기적으로 모니터링하기에 적합한 위성자료로 판단된다.

  • PDF