• Title/Summary/Keyword: Vegetation monitoring

Search Result 556, Processing Time 0.032 seconds

Habitat Characteristics and Vegetation Structure of the Evergreen Fern in Jejudo, Korea (제주도의 상록양치식물 자생지 환경특성 및 식생구조에 관한 연구)

  • Bang, Kwang Ja;Kim, Kwang-Du;Kang, Hyun-Kyung;Ju, Jin Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.3
    • /
    • pp.64-72
    • /
    • 2004
  • The research was carried out to define the environmental characteristics and vegetation structure of the evergreen fern habitat in Jejudo. The growth conditions of evergreen fern in various habitats was surveyed, including topographical features, vegetation structure, air temperature, humidity, intensity of light, water content and organic matter content in the soil. In the direction of the native habitat, 70% of research area was located in the southeast-facing slopes, 30% was located in southern slopes. The gradient ranged from $0^{\circ}$ to $30^{\circ}$. Temperature ranged from $16^{\circ}C$ to $28^{\circ}C$, and $22.3^{\circ}C$ was the average. Humidity ranged from 20 to 68%, and 36% was the average. In the native habitat, the highest light intensities reached 60,000 to 80,0001ux, but in general ranged from 300 to 40001ux. Water content in the soil ranged from 32% to 59%, organic matter content ranged from 8 to 13%. Within a unit of 25$m^2$, there were tall-tree layer such as Quercus galuca and Castanopsis cuspidata with a covering of rate 40~80%, a sub-tall-tree layer such as Camellia japonica, Staphylea bumalda and Sambucus williamsii with the covering rate of 3~5%, a shrub layer with the covering rate of 5~20%, and a grass layer with the covering rate of 40~95%. This research provides the basic data about the native habitat environment of the evergreen fern plant. Continuous monitoring and accumulation of data is necessary for the use of evergreen fern as vegetation materials.

Land-Cover Vegetation Change Detection based on Harmonic Analysis of MODIS NDVI Time Series Data (MODIS NDVI 시계열 자료의 하모닉 분석을 통한 지표 식생 변화 탐지)

  • Jung, Myunghee;Chang, Eunmi
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.351-360
    • /
    • 2013
  • Harmonic analysis enables to characterize patterns of variation in MODIS NDVI time series data and track changes in ground vegetation cover. In harmonic analysis, a periodic phenomenon of time series data is decomposed into the sum of a series of sinusoidal waves and an additive term. Each wave is defined by an amplitude and a phase angle and accounts for the portion of variance of complex curve. In this study, harmonic analysis was explored to tract ground vegetation variation through time for land-cover vegetation change detection. The process also enables to reconstruct observed time series data including various noise components. Harmonic model was tested with simulation data to validate its performance. Then, the suggested change detection method was applied to MODIS NDVI time series data over the study period (2006-2012) for a selected test area located in the northern plateau of Korean peninsula. The results show that the proposed approach is potentially an effective way to understand the pattern of NDVI variation and detect the change for long-term monitoring of land cover.

Analysis of area-based optimal capacity design method in vegetation type LID (식생형 LID 시설에서 면적 기반의 적정 용량 설계 방법 연구)

  • Park, Seowon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.383-389
    • /
    • 2018
  • Recently, it has been reported that water pollution due to non-point pollutants continues. Studies have been actively carried out to prevent such non-point pollutants from flowing into the water system and to prevent water pollution. In this study, to evaluate the adequate design of the LID facilities the rainfall corresponding to 80% of the cumulative rainfall of Yongin city was applied to an SA / CA graph obtained from the analysis of monitoring results of the vegetation type LID facility. As a result, the appropriate SA/CA ratio was 0.6% for stormwater sustain efficiency 80% and the appropriate SA/CA ratio was 0.5% for TSS removal efficiency 80%. The appropriate SA/CA ratio of the vegetation type LID proposed in this study can be used as a basis. for the future vegetation type LID design. If more data of vegetation type LID are added through continuous research, it will be more accurate.

Health Condition Assessment Using the Riparian Vegetation Index and Vegetation Analysis of Geumgang mainstream and Mihocheon (수변식생지수를 이용한 금강본류와 미호천의 건강성 평가 및 식생분석)

  • Lee, Seung-Yeon;Jang, Rae-Ha;Han, Young-Sub;Jung, Young-Ho;Lee, Soo-In;Lee, Eung-Pill;You, Young-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.1
    • /
    • pp.105-117
    • /
    • 2018
  • This study conducted health assessment and multivariate vegetation analysis using the riparian vegetation index in 30 sites of the Geumgang mainstream and Mihocheon to obtain practical data on the river management of the Geumgang. The result showed that the number of plant communities was 54. The flora was 75 families, 185 genera, 243 species, 2 subspecies, 21 varieties, 2 varieties, and 268 taxa. The riparian vegetation index was 38.3 (3.3; G-D1 ~ 66.7; G-U2, G-U4, and G-M3), and the health of the rivers in this area was evaluated as normal (grade C). The health of rivers was the highest in the upper stream of Geumgang mainstream and lowest in the downstream of Geumgang mainstream. The relationship between riparian vegetation index and chlorophyll-a content was low. The riparian vegetation was divided into five groups of Digitaria ciliaris colony group, Salix gracilistyla colony group, Erigeron annuus colony group, the group dominated by Humulus japonicus, Salix koreensis, Miscanthus sacchariflorus, and Phragmites japonica colonies, and the group dominated by Conyza canadensis and Echinochloa crusgalli var. echinata colonies. They had the similar health conditions. The CCA analysis showed that the environmental factors affecting the distribution of vegetation were physical factors such as vegetation area, artificial structure area, waterway area, branch width, channel width, and bank height and the biological factors such as the number of species. As such, it is necessary to maintain the health condition through continuous monitoring where the health condition is high and to apply active measures such as ecological restoration where the health condition is low.

A Research on the Special Characteristics of the Changes of the Vegetations in the World Cup Park Landfill Slope District (월드컵공원 사면지구 식생현황 및 변화 특성 연구)

  • Han, Bong-Ho;Park, Seok-Cheol;Choi, Han-Byeol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.4
    • /
    • pp.1-15
    • /
    • 2023
  • This research intended to reveal the special characteristics of the vegetation structure and the tendency of change of -landfill slope districts, which are reclaimed land, through an investigationsinto the presently existent vegetation and plant community structure of the World Cup Park landfill slope district. For the analysis of changes in vegetation, this study compared the results of field surveys in 1999, 2003, 2005, 2007, 2008, 2012, 2016, and 2021. For the investigation into the plant community structure, a field investigation was carried out in 2021 with six fixed investigation districts designated in 1999 as subjects. To analyze the change in the plant community structure, the past data on the population, the number of the species, and the species diversity by the layer in 2021 were compared and analyzed in the landfill slope district, which is reclaimed land. The changes of the vegetation distribution and the power had been affected by typhoons (Kompasu). Above the plantation foundation, which had been dry and poor, Salix koreensis, marsh woody plants that had formed the community, decreased greatly. The Robinia pseudoacacia community, after the typhoon in 2010, decreased in the number of species and population. Afterward, it showed a tendency to rebound. Regarding the Ailanthus altissima-Robinia pseudoacacia-Paulownia tomentosa community, the number of the species and the population had shown a change similar to the Robinia pseudoacacia community. The Paulownia tomentosa and the Ailanthus altissima have been culled. The slope was predicted as a Future Robinia pseudoacacia forest. The Salix pseudolasiogyne community has been transitioning to a Robinia pseudoacacia forest. Only some enumeration districts, the Robinia pseudoacacia forests and the Salix pseudolasiogyne, had been growing. However, most had been in been declining. It was predicted that this community will be maintained as a Robinia pseudoacacia forest in the future. As these vegetation communities are the representative vegetation of the landfill slope districts, which is reclaimed land, there is a need to understand the ecosystem changes of the community through continuous monitoring. The results of this research can be utilized as a basic material for the vegetation restoration of reclaimed land.

Early Warning System for Desertification in I. R. of Iran (An Application of GIS and Remote Sensing)

  • Sepehr A.;BodaghJamali J.;Javanmard S.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.189-192
    • /
    • 2005
  • Desertification is one of the main global environmental phenomena. It has resulted in deterioration environment and poor economy, and imposed threat to the surviving environment of the overall mankind. Therefore, creating of methods for monitoring and estimate of risk desertification are necessary. Early warning system is one of important ways for monitoring and forecasting of desertification. Remote Sensing and GIS technology are as suitable tools and methods for early warning system. In this aim, we have evaluated of applications of remote sensing and GIS in monitoring and estimating desertification process (case study in Fars Province of Iran). In this research, we have considered erosion and vegetation cover parameters as main factors affecting in desertification process. The result shows that remote sensing and GIS technology could be useful in evaluation of desertification as one method for desertification early warning. Also, Results suggested that erosion and plant cover are affecting in develop the desertification process in study area.

  • PDF

Potential of Drought Monitoring with Multi-Temporal Normalized Difference Vegetation Index in North-East Asia

  • Shin, Soo-Hyun;Ryu, Joung-Mi;Park, Yoon-Il;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1033-1035
    • /
    • 2003
  • This study attempts to analyze the potential of global scale NDVI data archive to monitor regional scale droughts. Ten-days maximum value NDVI composite data of the northeast Asia region were acquired for the growing seasons from 1993 to 2003. Two NDVI-derived drought indices (SVI, VCI), reported from previous studies, were applied to the study area. Although the SVI and VCI are mainly developed for monitoring the drought condition at the agriculture crop and grasslands, it turned out that they were also effective to reveal the drought condition over the temperate mixed forest. The drought symptom lasts at least one or two months even after the normal raining begins.

  • PDF

Pasture estimating with climate change over Mongolia using climate and NOAA/NDVI data

  • Erdenetuya, M.;Khudulmur, S.;Bolortsetseg, B.;Natsagdorj, L.;Batima, P.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.120-122
    • /
    • 2003
  • Geographical position and associated climatic influences can be a negative environmental condition that affects sustainable use of land resources, especially pastoral livestock production. Vegetation condition of the country is sensitively changes upon climate changes and human impacts. Within last 60 years data the annual air temperature has increased in 1.66 degrees in average and the total precipitation amount had almost no change. The main goal of this work is to relate climate change within last 20 years with pasture condition, estimated by NOAA/NDVI data set.

  • PDF

A Study on the Forest Vegetation of Deogyusan National Park (덕유산 국립공원 삼림식생에 관한 연구)

  • Kim, Chang-Hwan;Oh, Jang-Geun;Lee, Nam-Sook
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.33-40
    • /
    • 2013
  • From March 2012 to January 2013, this study was conducted as a part of the project for making a precise electronic ecological zoning map of vegetation on a highly reduced scale of 1 to 5,000 with a view to improving management efficiency of national parks and enlarging the availability of the data produced from the basic research monitoring the resources of national parks. For the research accuracy and rapidity, a vegetation map was specially created for the on-the-site-vegetation research. To make the map more meticulous, we categorized the vegetation database into five groups: broadleaved forest, coniferous forest, mixed forest, rock vegetation and miscellaneous one. After comparing the results of the data built for the vegetation research and the actual research findings, it was made clear that vegetation of both categories was almost the same in case of broad-leaved forest with 72.20% and 78.45% respectively, and also equivalent in other groups like, for example, coniferous forest (16.70%, 13.41%), mixed forest (9.50%, 7.49%) and rock vegetation (0.60%, 0.15%). According to the precise vegetation map produced from the research, the deciduous broad-leaved forest was the most widely prevalent type in the correlated hierarchical classification of vegetation, occupying 65.78% of the overall vegetation. It was followed by mountain valley forest (15.17%), coniferous forest (10.90%), and plantation forest (7.00%) in order. It is particularly noteworthy that Mt. Deogyusan national park has retained a very stable and versatile forest vegetation in the outstanding state since approximately 20% of the mountain turns out to belong to the I grade vegetation conservation classification which contains climax forests, unique vegetation, subalpine vegetation, matured stands which are older than 50 years and etc.

Calculating coniferous tree coverage using unmanned aerial vehicle photogrammetry

  • Ivosevic, Bojana;Han, Yong-Gu;Kwon, Ohseok
    • Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.85-92
    • /
    • 2017
  • Unmanned aerial vehicles (UAVs) are a new and yet constantly developing part of forest inventory studies and vegetation-monitoring fields. Covering large areas, their extensive usage has saved time and money for researchers and conservationists to survey vegetation for various data analyses. Post-processing imaging software has improved the effectiveness of UAVs further by providing 3D models for accurate visualization of the data. We focus on determining the coniferous tree coverage to show the current advantages and disadvantages of the orthorectified 2D and 3D models obtained from the image photogrammetry software, Pix4Dmapper Pro-Non-Commercial. We also examine the methodology used for mapping the study site, additionally investigating the spread of coniferous trees. The collected images were transformed into 2D black and white binary pixel images to calculate the coverage area of coniferous trees in the study site using MATLAB. The research was able to conclude that the 3D model was effective in perceiving the tree composition in the designated site, while the orthorectified 2D map is appropriate for the clear differentiation of coniferous and deciduous trees. In its conclusion, the paper will also be able to show how UAVs could be improved for future usability.