• Title/Summary/Keyword: Vegetation models

Search Result 209, Processing Time 0.026 seconds

Statistical estimation of crop yields for the Midwestern United States using satellite images, climate datasets, and soil property maps

  • Kim, Nari;Cho, Jaeil;Hong, Sungwook;Ha, Kyung-Ja;Shibasaki, Ryosuke;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.4
    • /
    • pp.383-401
    • /
    • 2016
  • In this paper, we described the statistical modeling of crop yields using satellite images, climatic datasets, soil property maps, and fertilizer data for the Midwestern United States during 2001-2012. Satellite images were obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS), and climatic datasets were provided by the Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group. Soil property maps were derived from the Harmonized World Soil Database (HWSD). Our multivariate regression models produced quite good prediction accuracies, with differences of approximately 8-15% from the governmental statistics of corn and soybean yields. The unfavorable conditions of climate and vegetation in 2012 could have resulted in a decrease in yields according to the regression models, but the actual yields were greater than predicted. It can be interpreted that factors other than climate, vegetation, soil, and fertilizer may be involved in the negative biases. Also, we found that soybean yield was more affected by minimum temperature conditions while corn yield was more associated with photosynthetic activities. These two crops can have different potential impacts regarding climate change, and it is important to quantify the degree of the crop sensitivities to climatic variations to help adaptation by humans. Considering the yield decreases during the drought event, we can assume that climatic effect may be stronger than human adaptive capacity. Thus, further studies are demanded particularly by enhancing the data regarding human activities such as tillage, fertilization, irrigation, and comprehensive agricultural technologies.

Predicting the Potential Distributions of Invasive Species Using the Landsat Imagery and Maxent : Focused on "Ambrosia trifida L. var. trifida" in Korean Demilitarized Zone (위성영상과 Maxent를 활용한 생태계교란생물 분포지역 예측 : DMZ의 단풍잎돼지풀을 대상으로)

  • Park, Hyun-Chul;Lim, Jeong-Cheol;Lee, Jung-Hwan;Lee, Gwan-Gyu
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2017
  • This study has been carried out for the purpose of predicting the potential habitat sites of invasive alien plants in the DMZ and providing the basic data for decision-making in managing the future DMZ natural environment. From 2007 to 2015, this study collected the data for the advent of Ambrosia trifida var. trifida through fieldwork around the DMZ area, and simulated the potential distribution area of Ambrosia trifida var. trifida using Maxent model among the models of species distributions. As a result, it showed that the potential distribution area of the Ambrosia trifida var. trifida was concentrated in the western DMZ with relatively low altitude and scanty in the central east regions with relatively high elevation and forest cover rate. Because the invasive alien vegetation is a significant threatening factor in the agriculture and restoration of ecology and it costs a lot to restore the area already invaded by invasive alien vegetation, advance precautions are necessary to prevent biological invasions. It is expected that it is possible to predict the disturbed ecosystems through this study for the efficient land use within DMZ in the future and to apply this study in setting up the areas for the development and conservation within the DMZ.

An Experimental Study on the Effect of Vegetation Roots on Slope Stability of Hillside Slopes (뿌리의 강도가 자연사면 안정에 미치는 영향에 관한 실험연구)

  • Lee, In-Mo;Seong, Sang-Gyu;Im, Chung-Mo
    • Geotechnical Engineering
    • /
    • v.7 no.2
    • /
    • pp.51-66
    • /
    • 1991
  • In the stability analysis of hillside slopes, the roots of vegetation have been considered to act as a soil reinforcement. In order to predict the amount of increase in soil shear resistance, produced by tensile strength of roots that intersect a potential slip surface in hillside slopes, new soil -root interaction models are proposed in this paper. For this purpose, firstly, laboratary teats and in-situ tests wert performed on soil-root systems, and experimental results were compared with a couple of soil-root interaction models which had been proposed by Gray, Waldron, and Wu etc. Based on this comparison, a new soil-root interaction model is proposed. Secondly, a probabilistic soil-root model is proposed based on statistical analysis considering random nature of root distribution, root characteristics, and soil-root interactions. Finally, to examine the effect of this root reinforcement system on stability of hillside slopes, a simple three-dimensional stability analysis was performed, and it was shown that root reinforcement had a significant stabilizing influence on shallow slips rather than deep slips in hillside slopes.

  • PDF

Prediction of Land Surface Temperature by Land Cover Type in Urban Area (도시지역에서 토지피복 유형별 지표면 온도 예측 분석)

  • Kim, Geunhan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1975-1984
    • /
    • 2021
  • Urban expansion results in raising the temperature in the city, which can cause social, economic and physical damage. In order to prevent the urban heat island and reduce the urban land surface temperature, it is important to quantify the cooling effect of the features of the urban space. Therefore, in order to understand the relationship between each object of land cover and the land surface temperature in Seoul, the land cover map was classified into 6 classes. And the correlation and multiple regression analysis between land surface temperature and the area of objects, perimeter/area, and normalized difference vegetation index was analyzed. As a result of the analysis, the normalized difference vegetation index showed a high correlation with the land surface temperature. Also, in multiple regression analysis, the normalized difference vegetation index exerted a higher influence on the land surface temperature prediction than other coefficients. However, the explanatory power of the derived models as a result of multiple regression analysis was low. In the future, if continuous monitoring is performed using high-resolution MIR Image from KOMPSAT-3A, it will be possible to improve the explanatory power of the model. By utilizing the relationship between such various land cover types considering vegetation vitality of green areas with that of land surface temperature within urban spaces for urban planning, it is expected to contribute in reducing the land surface temperature in urban spaces.

Assessment of MODIS Leaf Area Index (LAI) Influence on the Penman-Monteith Evapotranspiration Estimation of SLURP Model (MODIS 위성영상으로부터 추출된 엽면적지수(LAI)가 SLURP 모형의 Penman-Monteith 증발산량 추정에 미치는 영향 평가)

  • Ha, Rim;Shin, Hyung-Jin;Hong, Woo-Yong;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1087-1091
    • /
    • 2008
  • Evapotranspiration (ET) is an important factor while simulating daily streamflow in hydrological models. The LAI (Leaf Area Index) value reflecting the conditions of vegetation generally affects considerably in the estimation of ET, for example, when using FAO Penman Monteith equation. Recently in evaluating the vegetation condition as a fixed quantity, the remotely sensed LAIs from MODIS satellite data are avaliable, and the time series values of spatial LAI coupled with land use classes are utilized for ET evaluation. The 4 years (2001-2004) MODIS LAI data were prepared for the evaluation of continuous hydrological model, SLURP (Semi-distributed Land Use-based Runoff Processes). The model was applied for simulating the dam inflow of Chungjudam watershed ($6661.58\;km^2$) located in the upstream of Han river basin of South Korea. From the model results, the FAO Penman Monteith ET was affected by the MODIS LAIs. Especially for the ET of deciduous forest, the Total ET was 33.9 % lager than coniferous forest for the 3.8 % lager of LAI. The watershed average LAI caused a 7.0 % decrease in average soil moisture of the watershed and 14.3 % decrease of ground water recharge.

  • PDF

A Study on the Basic Planning of Country Club Using Photogrammetry (사진측량을 이용한 초구장 기본 계획에 관한 연구)

  • 유복모;조기성;박성규
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.8 no.1
    • /
    • pp.31-40
    • /
    • 1990
  • In this study, sample area was selected to compare the conventional method with photogrammetic method in basic planning of country club. Also various elements of planning, such as vegetation and water system, were considered through interpretation of aerial photographs and topographic maps, vegetation maps and water system maps were made as well as digital terrain models. These were used to analyse tophographic changes and landscape. As a result of comparing with the conventional method, it was shown that photographic interpretation could give more detail values than the conventional method, and that the digital terrain model could predict changes of topography, landscape and water system with more asccuracy. Consequently, the method of digital terrain model and photographic interpretation proved to be more effective than the conventional method in the case of water treatment, and planning of landscape and land utility.

  • PDF

Application of Simple Biosphere Model (SiB2) to Ecological Research (Simple Biosphere Model 2 (SiB2)의 생태학적 응용)

  • 김원식;조재일
    • The Korean Journal of Ecology
    • /
    • v.27 no.4
    • /
    • pp.245-256
    • /
    • 2004
  • The simple biosphere model 2 (SiB2), which is one of the land surface models, simulates the exchange of momentum, energy and mass such as water vapor and carbon dioxide between atmosphere and biosphere, and includes the biochemical sub-model for representation of stomatal conductance and photosynthetical activities. Throughout the SiB2 simulation, the significant information not only to understand of water and carbon budget but also to make an analysis of interaction such as feed-back and-forward between environment and vegetation is given. Using revised SiB2-Paddy, one sample study which is the evaluation of the runoff in Chaophraya river basin according to land use/cover change is presented in this review. Hence, SiB2 is available in order to ecological studied, if revised SiB2 for realistic simulation about soil respiration, computing leaf area index, vegetation competition and soil moisture is improved.

Validation of Energy and Water Fluxes Using Korea Land Data Assimilation and Flux Tower Measurement: Haenam KoFlux Site's Hydro-Environment Analysis (Flux Tower 관측자료와 KLDAS를 이용한 Soil-Vegetation-Atmosphere Transfer 모형의 적용:해남 KoFlux 지점의 수문순환 환경분석에 대하여)

  • Kim, Daeun;Lim, Yoon Jin;Lee, Seung Oh;Choi, Minha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.285-291
    • /
    • 2011
  • Accurate assessment of the water and energy cycles is essential to understand hydrologic, climatologic, and ecological processes. Common Land Model (CLM) is one of the well-developed Soil-Vegetation-Atmosphere Transfer (SVAT) models based on the water and energy balance equation for accurate prediction of hydro-environmental cycles. The CLM can estimate realistic and reliable results using relatively simple parameters. It has been widely used in the world, however in Korea practical applications of the CLM are rare due to lack of information and input data. In this study, the CLM with Korea Flux network (KoFlux) and Kore Land Data Assimilation System (KLDAS) data were individually validated for domestic applications. This study showed that all comparisons between observations and model results from KoFlux and KLDAS had reasonable correlation with determination coefficient of 0.73~1.00 via regression. The results confirmed the applicability of the CLM and the possibility of the KLDAS usage for the region where input data are not existed.

Determining Nitrogen Topdressing Rate at Panicle Initiation Stage of Rice based on Vegetation Index and SPAD Reading (유수분화기 식생지수와 SPAD값에 의한 벼 질소 수비 시용량 결정)

  • Kim Min-Ho;Fu Jin-Dong;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.386-395
    • /
    • 2006
  • The core questions for determining nitrogen topdress rate (Npi) at panicle initiation stage (PIS) are 'how much nitrogen accumulation during the reproductive stage (PNup) is required for the target rice yield or protein content depending on the growth and nitrogen nutrition status at PIS?' and 'how can we diagnose the growth and nitrogen nutrition status easily at real time basis?'. To address these questions, two years experiments from 2001 to 2002 were done under various rates of basal, tillering, and panicle nitrogen fertilizer by employing a rice cultivar, Hwaseongbyeo. The response of grain yield and milled-rice protein content was quantified in relation to RVIgreen (green ratio vegetation index) and SPAD reading measured around PIS as indirect estimators for growth and nitrogen nutrition status, the regression models were formulated to predict PNup based on the growth and nitrogen nutrition status and Npi at PIS. Grain yield showed quadratic response to PNup, RVIgreen around PIS, and SPAD reading around PIS. The regression models to predict grain yield had a high determination coefficient of above 0.95. PNup for the maximum grain yield was estimated to be 9 to 13.5 kgN/10a within the range of RVIgreen around PIS of this experiment. decreasing with increasing RVIgreen and also to be 10 to 11 kgN/10a regardless of SPAD readings around PIS. At these PNup's the protein content of milled rice was estimated to rise above 9% that might degrade eating quality seriously Milled-rice protein content showed curve-linear increase with the increase of PNup, RVIgreen around PIS, and SPAD reading around PIS. The regression models to predict protein content had a high determination coefficient of above 0.91. PNup to control the milled-rice protein content below 7% was estimated as 6 to 8 kgN/10a within the range of RVIgreen and SPAD reading of this experiment, showing much lower values than those for the maximum grain yield. The recovery of the Npi applied at PIS ranged from 53 to 83%, increasing with the increased growth amount while decreasing with the increasing Npi. The natural nitrogen supply from PIS to harvest ranged from 2.5 to 4 kg/10a, showing quadratic relationship with the shoot dry weight or shoot nitrogen content at PIS. The regression models to estimate PNup was formulated using Npi and anyone of RVIgreen, shoot dry weight, and shoot nitrogen content at PIS as predictor variables. These models showed good fitness with determination coefficients of 0.86 to 0.95 The prescription method based on the above models predicting grain yield, protein content and PNup and its constraints were discussed.

Evaluation of Spatio-temporal Fusion Models of Multi-sensor High-resolution Satellite Images for Crop Monitoring: An Experiment on the Fusion of Sentinel-2 and RapidEye Images (작물 모니터링을 위한 다중 센서 고해상도 위성영상의 시공간 융합 모델의 평가: Sentinel-2 및 RapidEye 영상 융합 실험)

  • Park, Soyeon;Kim, Yeseul;Na, Sang-Il;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.807-821
    • /
    • 2020
  • The objective of this study is to evaluate the applicability of representative spatio-temporal fusion models developed for the fusion of mid- and low-resolution satellite images in order to construct a set of time-series high-resolution images for crop monitoring. Particularly, the effects of the characteristics of input image pairs on the prediction performance are investigated by considering the principle of spatio-temporal fusion. An experiment on the fusion of multi-temporal Sentinel-2 and RapidEye images in agricultural fields was conducted to evaluate the prediction performance. Three representative fusion models, including Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), SParse-representation-based SpatioTemporal reflectance Fusion Model (SPSTFM), and Flexible Spatiotemporal DAta Fusion (FSDAF), were applied to this comparative experiment. The three spatio-temporal fusion models exhibited different prediction performance in terms of prediction errors and spatial similarity. However, regardless of the model types, the correlation between coarse resolution images acquired on the pair dates and the prediction date was more significant than the difference between the pair dates and the prediction date to improve the prediction performance. In addition, using vegetation index as input for spatio-temporal fusion showed better prediction performance by alleviating error propagation problems, compared with using fused reflectance values in the calculation of vegetation index. These experimental results can be used as basic information for both the selection of optimal image pairs and input types, and the development of an advanced model in spatio-temporal fusion for crop monitoring.