• Title/Summary/Keyword: Vegetation models

Search Result 210, Processing Time 0.026 seconds

Land Cover Classification Based on High Resolution KOMPSAT-3 Satellite Imagery Using Deep Neural Network Model (심층신경망 모델을 이용한 고해상도 KOMPSAT-3 위성영상 기반 토지피복분류)

  • MOON, Gab-Su;KIM, Kyoung-Seop;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.252-262
    • /
    • 2020
  • In Remote Sensing, a machine learning based SVM model is typically utilized for land cover classification. And study using neural network models is also being carried out continuously. But study using high-resolution imagery of KOMPSAT is insufficient. Therefore, the purpose of this study is to assess the accuracy of land cover classification by neural network models using high-resolution KOMPSAT-3 satellite imagery. After acquiring satellite imagery of coastal areas near Gyeongju City, training data were produced. And land cover was classified with the SVM, ANN and DNN models for the three items of water, vegetation and land. Then, the accuracy of the classification results was quantitatively assessed through error matrix: the result using DNN model showed the best with 92.0% accuracy. It is necessary to supplement the training data through future multi-temporal satellite imagery, and to carry out classifications for various items.

Model for Simulating SAR Images of Earth Surfaces (지표면의 SAR 영상 시뮬레이션 모델)

  • Jung Goo-Jun;Lee Sung-Hwa;Kim In-Seob;Oh Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.6 s.97
    • /
    • pp.615-621
    • /
    • 2005
  • In this paper, a model for simulating synthetic aperture radar(SAR) images of earth surfaces. The earth surfaces include forest area, rice crop field, other agricultural fields, grass field, road, and water surface. At first, the backscattering models are developed for bare soil surfaces, water surfaces, short vegetation fields such as rice fields and grass field, other agriculture areas, and forest areas. Then, the SAR images are generated from the digital elevation model(DEM) and digital terrain map. The DTM includes ten parameters, such as soil moisture, surface roughness, canopy height, leaf width, leaf length, leaf density, branch length, branch density, trunk length, and trunk density, if applicable. The scattering models are verified with measurements, and applied to generate an SAR image for an area.

Development of a Screening Method for Deforestation Area Prediction using Probability Model (확률모델을 이용한 산림전용지역의 스크리닝방법 개발)

  • Lee, Jung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.2
    • /
    • pp.108-120
    • /
    • 2008
  • This paper discusses the prediction of deforestation areas using probability models from forest census database, Geographic information system (GIS) database and the land cover database. The land cover data was analyzed using remotely-sensed (RS) data of the Landsat TM data from 1989 to 2001. Over the analysis period of 12 years, the deforestation area was about 40ha. Most of the deforestation areas were attributable to road construction and residential development activities. About 80% of the deforestation areas for residential development were found within 100m of the road network. More than 20% of the deforestation areas for forest road construction were within 100m of the road network. Geographic factors and vegetation change detection (VCD) factors were used in probability models to construct deforestation occurrence map. We examined the size effect of area partition as training area and validation area for the probability models. The Bayes model provided a better deforestation prediction rate than that of the regression model.

  • PDF

Comparison of Remote Sensing and Crop Growth Models for Estimating Within-Field LAI Variability

  • Hong, Suk-Young;Sudduth, Kenneth-A.;Kitchen, Newell-R.;Fraisse, Clyde-W.;Palm, Harlan-L.;Wiebold, William-J.
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.3
    • /
    • pp.175-188
    • /
    • 2004
  • The objectives of this study were to estimate leaf area index (LAI) as a function of image-derived vegetation indices, and to compare measured and estimated LAI to the results of crop model simulation. Soil moisture, crop phenology, and LAI data were obtained several times during the 2001 growing season at monitoring sites established in two central Missouri experimental fields, one planted to com (Zea mays L.) and the other planted to soybean (Glycine max L.). Hyper- and multi-spectral images at varying spatial. and spectral resolutions were acquired from both airborne and satellite platforms, and data were extracted to calculate standard vegetative indices (normalized difference vegetative index, NDVI; ratio vegetative index, RVI; and soil-adjusted vegetative index, SAVI). When comparing these three indices, regressions for measured LAI were of similar quality $(r^2$ =0.59 to 0.61 for com; $r^2$ =0.66 to 0.68 for soybean) in this single-year dataset. CERES(Crop Environment Resource Synthesis)-Maize and CROPGRO-Soybean models were calibrated to measured soil moisture and yield data and used to simulate LAI over the growing season. The CERES-Maize model over-predicted LAI at all corn monitoring sites. Simulated LAI from CROPGRO-Soybean was similar to observed and image-estimated LA! for most soybean monitoring sites. These results suggest crop growth model predictions might be improved by incorporating image-estimated LAI. Greater improvements might be expected with com than with soybean.

The Efficiency of Long Short-Term Memory (LSTM) in Phenology-Based Crop Classification

  • Ehsan Rahimi;Chuleui Jung
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.57-69
    • /
    • 2024
  • Crop classification plays a vitalrole in monitoring agricultural landscapes and enhancing food production. In this study, we explore the effectiveness of Long Short-Term Memory (LSTM) models for crop classification, focusing on distinguishing between apple and rice crops. The aim wasto overcome the challenges associatedwith finding phenology-based classification thresholds by utilizing LSTM to capture the entire Normalized Difference Vegetation Index (NDVI)trend. Our methodology involvestraining the LSTM model using a reference site and applying it to three separate three test sites. Firstly, we generated 25 NDVI imagesfrom the Sentinel-2A data. Aftersegmenting study areas, we calculated the mean NDVI values for each segment. For the reference area, employed a training approach utilizing the NDVI trend line. This trend line served as the basis for training our crop classification model. Following the training phase, we applied the trained model to three separate test sites. The results demonstrated a high overall accuracy of 0.92 and a kappa coefficient of 0.85 for the reference site. The overall accuracies for the test sites were also favorable, ranging from 0.88 to 0.92, indicating successful classification outcomes. We also found that certain phenological metrics can be less effective in crop classification therefore limitations of relying solely on phenological map thresholds and emphasizes the challenges in detecting phenology in real-time, particularly in the early stages of crops. Our study demonstrates the potential of LSTM models in crop classification tasks, showcasing their ability to capture temporal dependencies and analyze timeseriesremote sensing data.While limitations exist in capturing specific phenological events, the integration of alternative approaches holds promise for enhancing classification accuracy. By leveraging advanced techniques and considering the specific challenges of agricultural landscapes, we can continue to refine crop classification models and support agricultural management practices.

Geographic Information System and Remote Sensing in Soil Science (GIS와 원격탐사를 활용한 토양학 연구)

  • Hong, Suk-Young;Kim, Yi-Hyun;Choe, Eun-Young;Zhang, Yong-Seon;Sonn, Yeon-Kyu;Park, Chan-Won;Jung, Kang-Ho;Hyun, Byung-Keun;Ha, Sang-Keun;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.684-695
    • /
    • 2010
  • Geographic information system (GIS) is being increasingly used for decision making, planning and agricultural environment management because of its analytical capacity. GIS and remote sensing have been combined with environmental models for many agricultural applications on monitoring of soils, agricultural water quality, microbial activity, vegetation and aquatic insect distribution. This paper introduce principles, vegetation indices, spatial data structure, spatial analysis of GIS and remote sensing in agricultural applications including terrain analysis, soil erosion, and runoff potential. National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA) has a spatial database of agricultural soils, surface and underground water, weeds, aquatic insect, and climate data, and established a web-GIS system providing spatial and temporal variability of agricultural environment information since 2007. GIS-based interactive mapping system would encourage researchers and students to widely utilize spatial information on their studies with regard to agricultural and environmental problem solving combined with other national GIS database. GIS and remote sensing will play an important role to support and make decisions from a national level of conservation and protection to a farm level of management practice in the near future.

Impact Assessment Model of Bird Species for Land Developments (개발사업에 따른 조류종 영향평가모형 개발 및 적용)

  • Lee, Dong-Kun;Kim, Eun-Young;Lee, Eun-Jae;Song, Won-Kyong
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.3
    • /
    • pp.347-356
    • /
    • 2010
  • Forests are being seriously fragmented as a result of land development. Land development with disregard to its subsequent environmental impacts is a primary threat to biodiversity by incurring massive habitat losses and changes in structure and composition of forests. The purpose of this study was to develop the impact assessment model for quantitative distance or degree of disturbance by land developments. This study conducted a survey about structure and composition of forest species to determine degree of impact from land development. The edge effect of forest fragmentation on the number of bird species, population size, and bird diversity was obvious. In particular, the bird diversity sharply declines around the forest edge where intensive land development projects take place. To assess the disturbance of forest species, the factors selected were the bird diversity and the rate of edge species. The impact assessment model about bird diversity was explained by type of forest fragmentation and type of vegetation ($R^2$=0.23, p<0.005). The other model about edge species explained by a distance, type of forest fragmentation, type of vegetation, and width of road ($R^2$=0.34, p<0.001). In order to test the applicability of the model developed in this study, the models was applied to the Samsong housing development in Goyang-si, Gyunggi-do. The impacts of land development on the bird species were reasonably quantified to suggest effective mitigation measure. The impact assessment model developed in this study is useful to assess the magnitude of disturbance of bird species. Particularly, the model could be applied to the current Environmental Impact Assessment practices to predict and quantify the impacts of land developments projects on forest bird species.

Monitoring Onion Growth using UAV NDVI and Meteorological Factors

  • Na, Sang-Il;Park, Chan-Won;So, Kyu-Ho;Park, Jae-Moon;Lee, Kyung-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.4
    • /
    • pp.306-317
    • /
    • 2017
  • Unmanned aerial vehicles (UAVs) became popular platforms for the collection of remotely sensed data in the last years. This study deals with the monitoring of multi-temporal onion growth with very high resolution by means of low-cost equipment. The concept of the monitoring was estimation of multi-temporal onion growth using normalized difference vegetation index (NDVI) and meteorological factors. For this study, UAV imagery was taken on the Changnyeong, Hapcheon and Muan regions eight times from early February to late June during the onion growing season. In precision agriculture frequent remote sensing on such scales during the vegetation period provided important spatial information on the crop status. Meanwhile, four plant growth parameters, plant height (P.H.), leaf number (L.N.), plant diameter (P.D.) and fresh weight (F.W.) were measured for about three hundred plants (twenty plants per plot) for each field campaign. Three meteorological factors included average temperature, rainfall and irradiation over an entire onion growth period. The multiple linear regression models were suggested by using stepwise regression in the extraction of independent variables. As a result, $NDVI_{UAV}$ and rainfall in the model explain 88% and 68% of the P.H. and F.W. with a root mean square error (RMSE) of 7.29 cm and 59.47 g, respectively. And $NDVI_{UAV}$ in the model explain 43% of the L.N. with a RMSE of 0.96. These lead to the result that the characteristics of variations in onion growth according to $NDVI_{UAV}$ and other meteorological factors were well reflected in the model.

Estimation of Spatial-Temporal Net Primary Productivity and Soil Carbon Storage Change in the Capital area of South Korea under Climate Change (기후변화에 따른 수도권 산림의 순일차생산량과 토양탄소저장량의 시공간적 변화 추정)

  • Kwon, Sun-Soon;Choi, Sun-Hee;Lee, Sang-Don
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.757-765
    • /
    • 2012
  • The purpose of this study was to estimate the spatial-temporal NPP(Net Primary Productivity) and SCS(Soil Carbon Storage) of forest ecosystem under climate change in the capital area of South Korea using Mapss-Century1 (MC1), one of Dynamic Global Vegetation Models (DGVMs). The characteristics of the NPP and SCS changes were simulated based on a biogeochemical module in this model. As results of the simulation, the NPP varies from 2.02 to 7.43 tC $ha^{-1}\;yr^{-1}$ and the SCS varies from 34.55 to 84.81 tC $ha^{-1}$ during 1971~2000 respectively. Spatial mean NPP showed a little decreasing tendency in near future (2021~2050) and then increased in far future (2071~2100) under the condition of increasing air temperature and precipitation which were simulated by the A1B climate change scenario of Intergovernmental Panel on Climate Change (IPCC). But it was estimated that the temporal change of spatial mean NPP indicates 4.62% increasing tendency in which elevation is over 150m in this area. However, spatial mean SCS was decreased in the two future periods under same climate condition.

Relationship between Hydrologic Flux of Total Organic Carbon and Gross Primary Production (총 유기탄소의 수문학적 플럭스와 총 일차생산량 사이의 관계분석)

  • Park, Yoonkyung;Cho, Seonju;Choi, Daegyu;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.503-518
    • /
    • 2012
  • Models estimating carbon budget at land surface are mainly interested in vertical flux of carbon. On the other hand, studies on horizontal flux are obviously lacked to confirm that relationship between the hydrological flux of organic carbon discharged from catchment and terrestrial carbon production, a relation between Total Organic Carbon(TOC) and Gross Primary Production(GPP) tried analysis through cross correlation. The best correlation structure is correlation between GPP and TOC of flow-weighted mean concentration from watershed without delay. Furthermore, cross correlation analysis was performed by consider periodicity. The correlation between TOC and GPP in summer was similar to correlation without periodicity. Therefore, correlation between GPP and TOC was most regulated by the correlation between GPP and TOC at summer. As a result, the vegetation carbon and organic carbon from watershed is recognized a close relationship on the seasonal. Therefore, future research is correlation analyzing between vegetation variables according season, GPP and TOC, we are expected to use quantitative understanding that horizontal flux flow of carbon from the surface.