• Title/Summary/Keyword: Vegetation dryness index

Search Result 12, Processing Time 0.015 seconds

Effect of Hydro-meteorological and Surface Conditions on Variations in the Frequency of Asian Dust Events

  • Ryu, Jae-Hyun;Hong, Sungwook;Lyu, Sang Jin;Chung, Chu-Yong;Shi, Inchul;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.25-43
    • /
    • 2018
  • The effects of hydro-meteorological and surface variables on the frequency of Asian dust events (FAE) were investigated using ground station and satellite-based data. Present weather codes 7, 8, and 9 derived from surface synoptic observations (SYNOP)were used for counting FAE. Surface wind speed (SWS), air temperature (Ta), relative humidity (RH), and precipitation were analyzed as hydro-meteorological variables for FAE. The Normalized Difference Vegetation Index (NDVI), land surface temperature (LST), and snow cover fraction (SCF) were used to consider the effects of surface variables on FAE. The relationships between FAE and hydro-meteorological variables were analyzed using Z-score and empirical orthogonal function (EOF) analysis. Although all variables expressed the change of FAE, the degrees of expression were different. SWS, LST, and Ta (indices applicable when Z-score was < 0) explained about 63.01, 58.00, and 56.17% of the FAE,respectively. For NDVI, precipitation, and RH, Asian dust events occurred with a frequency of about 55.38, 67.37, and 62.87% when the Z-scores were > 0. EOF analysis for the FAE showed the seasonal cycle, change pattern, and surface influences related to dryness condition for the FAE. The intensity of SWS was the main cause for change of FAE, but surface variables such as LST, SCF, and NDVI also were expressed because wet surface conditions suppress FAE. These results demonstrate that not only SWS and precipitation, but also surface variables, are important and useful precursors for monitoring Asian dust events.

Research Status of Satellite-based Evapotranspiration and Soil Moisture Estimations in South Korea (위성기반 증발산량 및 토양수분량 산정 국내 연구동향)

  • Choi, Ga-young;Cho, Younghyun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1141-1180
    • /
    • 2022
  • The application of satellite imageries has increased in the field of hydrology and water resources in recent years. However, challenges have been encountered on obtaining accurate evapotranspiration and soil moisture. Therefore, present researches have emphasized the necessity to obtain estimations of satellite-based evapotranspiration and soil moisture with related development researches. In this study, we presented the research status in Korea by investigating the current trends and methodologies for evapotranspiration and soil moisture. As a result of examining the detailed methodologies, we have ascertained that, in general, evapotranspiration is estimated using Energy balance models, such as Surface Energy Balance Algorithm for Land (SEBAL) and Mapping Evapotranspiration with Internalized Calibration (METRIC). In addition, Penman-Monteith and Priestley-Taylor equations are also used to estimate evapotranspiration. In the case of soil moisture, in general, active (AMSR-E, AMSR2, MIRAS, and SMAP) and passive (ASCAT and SAR)sensors are used for estimation. In terms of statistics, deep learning, as well as linear regression equations and artificial neural networks, are used for estimating these parameters. There were a number of research cases in which various indices were calculated using satellite-based data and applied to the characterization of drought. In some cases, hydrological cycle factors of evapotranspiration and soil moisture were calculated based on the Land Surface Model (LSM). Through this process, by comparing, reviewing, and presenting major detailed methodologies, we intend to use these references in related research, and lay the foundation for the advancement of researches on the calculation of satellite-based hydrological cycle data in the future.