• Title/Summary/Keyword: Vegetation cover

Search Result 545, Processing Time 0.026 seconds

A CLASSIFICATION METHOD BASED ON MIXED PIXEL ANALYSIS FOR CHANGE DETECTION

  • Jeong, Jong-Hyeok;Takeshi, Miyata;Takagi, Masataka
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.820-824
    • /
    • 2003
  • One of the most important research areas on remote sensing is spectral unmixing of hyper-spectral data. For spectral unmixing of hyper spectral data, accurate land cover information is necessary. But obtaining accurate land cover information is difficult process. Obtaining land cover information from high-resolution data may be a useful solution. In this study spectral signature of endmembers on ASTER acquired in October was calculated from land cover information on IKONOS acquired in September. Then the spectral signature of endmembers applied to ASTER images acquired on January and March. Then the result of spectral unmxing of them evauateted. The spectral signatures of endmembers could be applied to different seasonal images. When it applied to an ASTER image which have similar zenith angle to the image of the spectral signatures of endmembers, spectral unmixing result was reliable. Although test data has different zenith angle from the image of spectral signatures of endmembers, the spectral unmixing results of urban and vegetation were reliable.

  • PDF

Improvement of Vegetation Cooling Effects in BioCAS for Better Estimation of Daily Maximum Temperature during Heat Waves - In Case of the Seoul Metropolitan Area - (식생냉각효과 적용을 통한 BioCAS의 폭염기간 일 최고기온 추정 개선 - 서울 및 수도권지역을 중심으로 -)

  • Lee, Hankyung;Yi, Chaeyeon;Kim, Kyu Rang;Cho, Changbum
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.131-147
    • /
    • 2019
  • On the urban scale, Micro-climate analysis models for urban scale have been developed to investigate the atmospheric characteristics in urban surface in detail and to predict the micro-climate change due to the changes in urban structure. BioCAS (Biometeorological Climate Impact Assessment System) is a system that combines such analysis models and has been implemented internally in the Korea Meteorological Administration. One of role in this system is the analysis of the health impact by heat waves in urban area. In this study, the vegetation cooling models A and B were developed and linked with BioCAS and evaluated by the temperature drop at the vegetation areas during ten selected heat-wave days. Smaller prediction errors were found as a result of applying the vegetation cooling models to the heat-wave days. In addition, it was found that the effects of the vegetation cooling models produced different results according to the distribution of vegetation area in land cover near each observation site - the improvement of the model performance on temperature analysis was different according to land use at each location. The model A was better fitted where the surrounding vegetation ratio was 50% or more, whereas the model B was better where the vegetation ratio was less than 50% (higher building and impervious areas). Through this study, it should be possible to select an appropriate vegetation cooling model according to its fraction coverage so that the temperature analysis around built-up areas would be improved.

Improvement of infrared channel emissivity data in COMS observation area from recent MODIS data(2009-2012) (최근 MODIS 자료(2009-2012)를 이용한 천리안 관측 지역의 적외채널 방출률 자료 개선)

  • Park, Ki-Hong;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.109-126
    • /
    • 2014
  • We improved the Land Surface Emissivity (LSE) data (Kongju National University LSE v.2: KNULSE_v2) over the Communication, Ocean and Meteorological Satellite (COMS) observation region using recent(2009-2012) Moderate Resolution Imaging Spectroradiometer (MODIS) data. The surface emissivity was derived using the Vegetation Cover Method (VCM) based on the assumption that the pixel is only composed of ground and vegetation. The main issues addressed in this study are as follows: 1) the impacts of snow cover are included using Normalized Difference Snow Index (NDSI) data, 2) the number of channels is extended from two (11, 12 ${\mu}m$) to four channels (3.7, 8.7, 11, 12 ${\mu}m$), 3) the land cover map data is also updated using the optimized remapping of the five state-of-the-art land cover maps, and 4) the latest look-up table for the emissivity of land surface according to the land cover is used. The updated emissivity data showed a strong seasonal variation with high and low values for the summer and winter, respectively. However, the surface emissivity over the desert or evergreen tree areas showed a relatively weak seasonal variation irrespective of the channels. The snow cover generally increases the emissivity of 3.7, 8.7, and 11 ${\mu}m$ but decreases that of 12 ${\mu}m$. As the results show, the pattern correlation between the updated emissivity data and the MODIS LSE data is clearly increased for the winter season, in particular, the 11 ${\mu}m$. However, the differences between the two emissivity data are slightly increased with a maximum increase in the 3.7 ${\mu}m$. The emissivity data updated in this study can be used for the improvement of accuracy of land surface temperature derived from the infrared channel data of COMS.

An Analysis of Hydrological and Ecological Characteristics of River Wetlands -Case Study of Wangjin District in Geumgang River- (하천습지의 수문생태적 특성 분석 -금강 왕진지구를 사례로-)

  • SeungWon Hong;MiOk Park;BonHak Koo
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.315-325
    • /
    • 2023
  • This study analyzed the disturbance process of river wetlands based on modern and contemporary maps and aerial photographs, and analyzed land cover and NDVI changes in the hydro-ecological impact zone around the Wangjin District. A stable sandbar was formed near Wangjinnaru and was naturally connected to the agricultural land within inland, but after the sandbar and river wetland were destroyed due to heavy floods, embankment construction, land readjustment, and comprehensive river management, artificial replaced wetlands and ecological parks were created, and sandbars in the form of river island were restored again. The change in land cover in the hydro-ecological impact zone showed that rice paddies and fields in agricultural areas decreased from 36.3% in 2013 to 22.9% in 2022, with the largest change in area to 814,476m2. It was confirmed that the land cover was undergoing vegetation over time. Since the vegetation condition is good, a healthy food chain is formed in the waterfront ecosystem, which can be expected to be biodiversity-positive. Summarizing seasonal changes in the vegetation index, the overall change in the vegetation index was the largest in spring (March), followed by summer (June), and the change in autumn (September) was the smallest except for water. By land use, the overall vegetation index (NDVI) increased, including 39.1% improvement in alternative wetlands, 38.2% improvement in load, 44.3% improvement in ecological parks, 35.6% improvement in agricultural areas, and -8.1% decrease in water.

Method of Monitoring Forest Vegetation Change based on Change of MODIS NDVI Time Series Pattern (MODIS NDVI 시계열 패턴 변화를 이용한 산림식생변화 모니터링 방법론)

  • Jung, Myung-Hee;Lee, Sang-Hoon;Chang, Eun-Mi;Hong, Sung-Wook
    • Spatial Information Research
    • /
    • v.20 no.4
    • /
    • pp.47-55
    • /
    • 2012
  • Normalized Difference Vegetation Index (NDVI) has been used to measure and monitor plant growth, vegetation cover, and biomass from multispectral satellite data. It is also a valuable index in forest applications, providing forest resource information. In this research, an approach for monitoring forest change using MODIS NDVI time series data is explored. NDVI difference-based approaches for a specific point in time have possible accuracy problems and are lacking in monitoring long-term forest cover change. It means that a multi-time NDVI pattern change needs to be considered. In this study, an efficient methodology to consider long-term NDVI pattern is suggested using a harmonic model. The suggested method reconstructs MODIS NDVI time series data through application of the harmonic model, which corrects missing and erroneous data. Then NDVI pattern is analyzed based on estimated values of the harmonic model. The suggested method was applied to 49 NDVI time series data from Aug. 21, 2009 to Sep. 6, 2011 and its usefulness was shown through an experiment.

A Study of Vegetation Establishment on Denuded Forest Land (황폐나지(荒廢裸地) 지피식생(地被植生) 조성(造成)에 관한 연구(硏究))

  • Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.31 no.1
    • /
    • pp.37-42
    • /
    • 1976
  • In this study, an effort was made to find out more effective methods for vegetation establishment on denuded forest land along Cheon Bo Mountains, This area has serious sheet erosion as a major erosion process and parent material is granite gneiss which is known as one of the most erosive materials. Lespedeza bicolor, Arundinella hirta and Robinia pseudoacacia were used as ground cover species. Seeding methods were open broadcast seeding and broadcast seeding with straw mulch, dill seeding with 10cm and 20cm width, and spot seeding with 20cm and 30cm diameter. 1. On slopes less than 30 degrees, broadcast seeding method with straw mulch was the most effective way to establish vegetation cover. 2. On steep slopes more than 30 degrees, 10cm drill seeding method was more effective than the other methods. 3. Soil Texture has an influence on vegetation establishment governing soil moisture condition. Coverage and fresh weight were increased with the fine material qantity in soil. 4. In process of year, coverage was increased with fresh weight. On the other hand, survival decreased.

  • PDF

Terrace Fields Classification in North Korea Using MODIS Multi-temporal Image Data (MODIS 다중시기 영상을 이용한 북한 다락밭 분류)

  • Jeong, Seung Gyu;Park, Jonghoon;Park, Chong Hwa;Lee, Dong Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.1
    • /
    • pp.73-83
    • /
    • 2016
  • Forest degradation reduces ecosystem services provided by forest and could lead to change in composition of species. In North Korea, there has been significant forest degradation due to conversion of forest into terrace fields for food production and cut-down of forest for fuel woods. This study analyzed the phenological changes in North Korea, in terms of vegetation and moisture in soil and vegetation, from March to Octorber 2013, using MODIS (MODerate resolution Imaging Spectroradiometer) images and indexes including NDVI (Normalized Difference Vegetation Index), NDSI (Normalized Difference Soil Index), and NDWI (Normalized Difference Water Index). In addition, marginal farmland was derived using elevation data. Lastly, degraded terrace fields of 16 degree was analyzed using NDVI, NDSI, and NDWI indexes, and marginal farmland characteristics with slope variable. The accuracy value of land cover classification, which shows the difference between the observation and analyzed value, was 84.9% and Kappa value was 0.82. The highest accuracy value was from agricultural (paddy, field) and forest area. Terrace fields were easily identified using slope data form agricultural field. Use of NDVI, NDSI, and NDWI is more effective in distinguishing deforested terrace field from agricultural area. NDVI only shows vegetation difference whereas NDSI classifies soil moisture values and NDWI classifies abandoned agricultural fields based on moisture values. The method used in this study allowed more effective identification of deforested terrace fields, which visually illustrates forest degradation problem in North Korea.

Ten Years' Monitoring of Intertidal Macroalgal Vegetation of Hyogo Prefecture, Northwestern Coast of Honshu, Japan to Assess the Impact of the Nakhodka Oil Spill

  • Kawai, Hiroshi;Kamiya, Mitsunobu;Komatsu, Teruhisa;Nakaoka, Masahiro;Yamamoto, Tomoko;Marine Life Research Group of Takeno, Marine Life Research Group of Takeno
    • ALGAE
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2007
  • In order to understand the impact of the heavy-oil pollution by the 1997 Nakhodka oil spill on the intertidal macroalgal vegetation, we have been monitoring succession in the intertidal flora since 1997 at Oh-ura, Takno, and Imago-Ura Cove, Kasumi in Hyogo Prefecture, northwestern coast of Honshu, Japan. We employed two different monitoring methods: 1) The percent cover of macro-algae (seaweeds) in 1 x 1 m quadrats along 450 m intertidal transects parallel to the shoreline were assessed and recorded by photographic imaging until 2002, and for 30-40 m transects of the most heavily polluted areas in 2004 and 2006; 2) The percent cover of macro-algae in 0.5 x 0.5 m quadrats along a transect line perpendicular to the shore were recorded and all macrophytes within the quadrat were completely removed to record the wet weight of each taxon (1997-2006). Based on the monitoring data, we conclude that the high intertidal zone at Imago-ura, where a large part of the stranded oil accumulated, suffered the heaviest damage and experienced the slowest recovery. In addition, although the original status of macroalgal vegetation before the impact was not well-documented, it appeared that recovery from the damage caused by the oil pollution required four to five years.

Vegetation Structure at the Slope Direction and Characteristic of Seedlings of Abies koreana in Hallasan Mountain (한라산 구상나무림의 사면별 식생구조와 치수발생 특성)

  • Song, Kuk-Man;Kang, Young-Je;Hyeon, Hwa-Ja
    • Journal of Environmental Science International
    • /
    • v.23 no.1
    • /
    • pp.39-46
    • /
    • 2014
  • This study surveyed Abies koreana to identify the correlation between its vegetation structure according to its slope direction and seedling establishment in a bid to build basic research data on the changes and conservation of the A. koreana in Hallasan Mountain. The findings of its vegetation structure revealed that in both areas, Importance value was given to the A. koreana for its tree layer, the Taxus cuspidata for its shrub layer, and the Sasa quelpaertensis for its herb layer. However, in the Youngsil area with the tree layer, high importance was given to deciduous broad-leaved trees such as Prunus maximowiczii, Quercus mongolica, and the young species of the A. koreana in the shrub layer that can maintain the A. koreana forest's greater importance in the Jindallebat than in the Youngsil. Thus, the A. koreana forest in the Jindallebat is believed to lastlonger. The findings of correlation between the quantity of seedlings and their location by area revealed that in each tiny quadrat, the A. koreana seedling averaged 5.3 in the Youngsil and 2.9 in the Jindallebat. Both areas were all found to have a positive correlation in terms of rock exposure ratio and dead tree ratio as well as a negative correlation with regard to the cover degree of S. quelpaertensis, the canopy gap, the total vegetation, and the herb layer. It was found that the cover degree of the herb layer in the Youngsil and the S. quelpaertensis in the Jindallebat had the largest impact on the A. koreana seedlings.

The Classification of Forest by Cluster Analysis in the Natural Forest of the Southern Region of Baekdudaegan Mountains (Cluster 분석에 의한 백두대간 남부권역 천연림의 산림 분류)

  • Lee, Jeong-Min;Hwang, Kwang-Mo;Kim, Ji-Hong
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.12-22
    • /
    • 2014
  • This study was carried out to classify forest communities and to aggregate forest cover types for the complex and diversified natural forest areas of Hwangaksan, Bakseoksan, Deogyusan, and Jirisan in southern region of Baekdudaegan Mountains. The vegetation data were collected by point-centered quarter sampling method. Eight hundred fifty one sample points were subjected to cluster analysis to classify 18 forest communities, which were aggregated into 7 representative forest cover types on the basis of community similarity from composition of canopy species. They were mixed mesophytic forest cover type, the others deciduous forest cover type, Quercus variabilis-Quercus serrata cover type, Quercus mongolica cover type, Pinus densiflora cover type, Carpinus laxiflora cover type, and Abies koreana cover type. The Quercus mongolica cover type was most widely distributed in the study areas, and this cover type tended to occur in the place of higher altitude as latitude was getting lower. Mixed mesophytic forest and the others deciduous forest cover type were commonly distributed in the areas of valley, on the other hand, Quercus mongolica cover type and Pinus densiflora cover type tended to be distributed in the areas of ridge.