• Title/Summary/Keyword: Vegetation change

Search Result 875, Processing Time 0.027 seconds

Change Prediction for Vegetation Structure, Species Diversity and Life-form of Evergreen Broad-leaved Forest by Climate Change in Gageo-Do Island, Korea (기후변화에 따른 가거도 상록활엽수림의 식생 구조, 종 다양성, 생활형의 변화 예측)

  • Lee, Sung-Je;Ahn, Young-Hee
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.979-997
    • /
    • 2013
  • This study aims at classifying and interpreting on the vegetation structure, the correlation between a vegetation and an environment, a species diversity and a life-form of Evergreen Broad-Leaved Forest(EBLF) located in Gageo-do Island. It is also the objective that the estimation of vegetation change founded on the species composition and characteristics. The vegetation of EBLF was classified into three forests or four community units as Machilus thunbergii forest (Polystichum polyblepharon-M. thunbergii community and Phaenosperma globosum-M. thunbergii community), Ilex integra-Castanopsis sieboldii community, Quercus acuta community and Neolitsea sericea stand. The ordination analysis by DCA is analogous with the vegetation structure analysis. As a result of the correlation (Pearson's correlation coefficient) with environmental conditions, the Altitude has the significance with the distribution of communities. The total vegetation change by progress of succession will not be wandered away from the present vegetation structure practically, and the vegetation on the underlayers will be a little changed.

Numerical analysis of deposition and channel change in the vegetation zone (식생대에서 유사의 퇴적과 하도변화 수치모의 분석)

  • Hwang, Hyo;Jang, Chang-Lae;Kang, Minseok
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.23-34
    • /
    • 2023
  • This study analyzed the bed load transport and channel change on the vegetation zone through laboratory experiments and numerical simulations. To examine the effect of vegetation zone in the laboratory experiment, artificial vegetation zones made of acrylic sticks were installed in the experimental channel, and discharge conditions were adjusted to examine the bed load transport and channel change in the vegetation zone. Next, numerical simulations were performed by applying the same conditions as those of the laboratory experiment to the Nays2D model, a two-dimensional numerical model, and the applicability of the numerical model was examined by comparing the results with the results of the laboratory experiment. Finally, by applying a numerical model, the bed load transport and channel change according to the change in vegetation density were examined. As a result of examining the bed load transport and channel change in the vegetation zone according to the discharge condition change by applying the laboratory experiment and the numerical model, the results of the two application methods were similar. As the discharge increased, bed load from the upper stream was deposited inside the vegetation zone. On the other hand, on the other side of the vegetation zone, the flow was concentrated and erosion occurred. Also, the range of erosion increased in the downstream direction. As a result of examining the bed load transport and channel change according to the change in vegetation density, as the vegetation density increased, the bed load from the upper stream was deposited inside the vegetation zone. On the other hand, due to the increase in vegetation density, the flow was concentrated to the opposite side of the vegetation zone, erosion occurred.

Vegetation Type Classification and Endemic-Rare Plants Investigation in Forest Vegetation Area Distributed by Vulnerable Species to Climate Change, Mt. Jiri (지리산 기후변화 취약수종 분포지의 산림식생 유형 및 희귀-특산식물 분포 특성)

  • Kim, Ji Dong;Park, Go Eun;Lim, Jong-Hwan;Yun, Chung Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.2
    • /
    • pp.113-125
    • /
    • 2018
  • Subalpine zone is geographically vulnerable to climate change. Forest vegetation in this zone is one of the important basic indicator to observe the influence of climate change. This study was conducting phytosociological community classification and endemic-rare plants investigation based on vulnerable species to climate change at the subalpine zone, Mt. Jiri. Vegetation data were collected by 37 quadrate plots from March to October, 2015. In order to understand the species composition of plant sociological vegetation types and the ecological impacts of species, we analyzed the layer structure of vegetation type using important values. Vegetation type was classified into eight species groups and five vegetation units. The vegetation types can be suggested as an indicator on the change of species composition according to the future climate change. There were 9 taxa endemic plants and 17 taxa rare plants designated by KFS(Korea Forest Service) where 41.2% of them were the northern plant. Endemic-rare plants increased as the altitude of vegetation unit increase. Importance value analysis showed that the mean importance value of Abies koreana was highest of all vegetation units. Based on analysis of each layer, all units except vegetation unit 1 were considered to be in competition with the species such as Quercus mongolica and Acer pseudosieboldianum. The results of this study can be a basic data to understand the new patterns caused by climate change. In addition, it can be a basic indicator of long-term monitoring through vegetation science approach.

Basic Investigation about Hydro-Geomorphologic and Vegetation Cover Changes on the Regulated River - A Case of the Downstream River of Andong Dam/Imha Dam on the Nakdong River (조절된 하천의 수문지형학적 변화와 식생 피복의 변화에 관한 기초 조사 - 낙동강 안동댐/임하댐 하류 하천 사례)

  • Woo, Hyo Seop;Rhee, Dong Sup;Ahn, Hong Kyu;Lee, Chang Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1335-1339
    • /
    • 2004
  • A hydro-geomorphologic change in a sand bed channel reach and vegetation expansion by changes in the How regime is analyzed in this study. Field and aerial photo surveys, basic hydrological analysis about flow regime change due to two dams, Andong Dam and Imha Dam, on the upstream river and computer modeling are conducted. Two Dams in the study reach have obviously affected downstream channel in many ways including the bed particle coarsening, vegetation expansion on the sandbars and following river channel braiding. The phenomenon of no vegetation on the large point bar in front of Hahwe Village seems due to disturbance of the sandbar surface probably due to the cross flow in the meander reach during the flood. Another reason for no vegetation is that the sandbar on this reach has lower subsurface water lovels, as compared with the others in the up- and downstream of the reach where vegetation expanded, which would hinder vegetation from germinating and growing on the sandbar.

  • PDF

Variation in Vegetation Area caused by Topographical Change at Jinudo in the Nakdong Estuary (낙동강 하구역 진우도내 지형변동에 따른 식생면적의 변화)

  • Ryu, Sung-Hoon;Lee, In-Cheol;Park, So-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.19-24
    • /
    • 2009
  • In order to analysis the variation in vegetation area caused by topographical change at Jinudo in the Nakdong estuary, we used aerial photographs of Jinudo from 1998 to 2006. To extract an accuracy shoreline from these aerial photographs, a tide calibration was performed. We also estimated the annual variation in topographic area and vegetation area, and then analyzed the relationship between them by a correlation analysis. The following results were obtained: 1) The calibrated shoreline distance of Jinudo from 1998 to 2006 was estimated to have a range of (-)1,927 cm to (+)4,671 cm. 2) Annual changes in the topographic area and vegetation area in Jinudo have been increasing gradually from 1998, and the correlation coefficient between topographic area and vegetation area is 0.97. 3) The estimated topographic areas were with following order: southern (III), eastern (IV), northern (II) and western (I), while for the vegetation area, the order was southern (III), northern (II), eastern (IV) and western (I). 4) The vegetation area of the southern region (III) of Jinudo had the largest size among the regions, and was calculated to be $4.3{\sim}5.4$ times larger than the eastern region (IV).

Vegetation Change Detection in the Sihwa Embankment using Multi-Temporal Satellite Data (다중시기 위성영상을 이용한 시화 방조제 내만 식생변화탐지)

  • Jeong, Jong-Chul;Suh, Young-Sang;Kim, Sang-Wook
    • Journal of Environmental Science International
    • /
    • v.15 no.4
    • /
    • pp.373-378
    • /
    • 2006
  • The western coast of South Korea is famous for its large and broad tidal lands. Nevertheless, land reclamation, which has been conducted on a large scale, such as Sihwa embankment construction project has accelerated coastal environmental changes in the embankment inland. For monitoring of environmental change, vegetation change detecting of the embankment inland were carried out and field survey data compared with Landsat TM, ETM+, IKONOS, and EOC satellite remotely sensed data. In order to utilize multi-temporal remotely sensed images effectively, all data set with pixel size were analyzed by same geometric correction method. To detect the tidal land vegetation change, the spectral characteristics and spatial resolution of Landsat TM and ETM+ images were analyzed by SMA(spectral mixture analysis). We obtained the 78.96% classification accuracy and Kappa index 0.2376 using March 2000 Landsat data. The SMA(spectral mixture analysis) results were considered with comparing of vegetation seasonal change detection method.

Numerical Analysis for Wave Propagation and Sediment Transport with Coastal Vegetation (연안식생에 의한 표사이동 특성에 관한 수치해석)

  • Lee, Seong-Dae
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.18-24
    • /
    • 2007
  • The environmental value of coastal vegetation has been widely recognized. Coastal vegetation such as reed forests and seaweed performs several useful functions, including maintaining water quality, supporting fish (and, thus, fisheries), protecting beaches and land from wave attack, stabilizing sea beds and providing scenic value. However, studies on the physical and numerical process of wave propagation, sediment transport and bathymetric change are few and far between compared to those on the hydrodynamic roles of coastal vegetation. In general, vegetation flourishing along the coastal areas attenuates the incident waves through momentum exchange between stagnated water mass in the vegetated area and rapid mass in the un-vegetated area. This study develops a numerical model for describing the wave attenuation and sediment transport in a wave channel in a vegetation area. By comparing these results, the effects of vegetation properties, wave properties and model parameters are clarified.

Vegetation Interannualvariavility Over Korea Using 10-Years 1KM NDVI Data (1KM NDVI 10년 자료를 이용한 한반도 식생의 경년변동 분석)

  • Kim, In-Hwan;Han, Kyung-Soo;Kim, Sang-Il
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • Global warming and climatic changes due to human activities impact on marine and terrestrial ecosystems, which feedbacks to climate system. These negative feedbacks amplify or accelerate again global climate change. In particular, it is important to analyze vegetation change. This study attempts to analyze quantitatively vegetation change in Korea peninsula by using harmonic analysis. Harmonic-Analysis based on Fourier Transform is the method to effectively demonstrate for time series data. Especially, Harmonic-Analysis is very suitable method to analyze vegetation change because the vegetation repeats the cycle growth and extinction every year. The result of harmonic-analysis shows vegetation change as time passes. In this study, SPOTNEGETATION S10 MVC NDVI data was used during last 10 years (1999-2008) in Korea Peninsula. Also, land type classification used MODIS Land Cover Map data. The study estimated that phase values moved up approximately 0.5 day per year in cropland and 0.8 day per year in forest.

A Prediction of Forest Vegetation based on Land Cover Change in 2090 (토지피복 변화를 반영한 미래의 산림식생 분포 예측에 관한 연구)

  • Lee, Dong-Kun;Kim, Jae-Uk;Park, Chan
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.2
    • /
    • pp.117-125
    • /
    • 2010
  • Korea's researchers have recently studied the prediction of forest change, but they have not considered landuse/cover change compared to distribution of forest vegetation. The purpose of our study is to predict forest vegetation based on landuse/cover change on the Korean Peninsula in the 2090's. The methods of this study were Multi-layer perceptrom neural network for Landuse/cover (water, urban, barren, wetland, grass, forest, agriculture) change and Multinomial Logit Model for distribution prediction for forest vegetation (Pinus densiflora, Quercus Spp., Alpine Plants, Evergreen Broad-Leaved Plants). The classification accuracy of landuse/cover change on the Korean Peninsula was 71.3%. Urban areas expanded with large cities as the central, but forest and agriculture area contracted by 6%. The distribution model of forest vegetation has 63.6% prediction accuracy. Pinus densiflora and evergreen broad-leaved plants increased but Quercus Spp. and alpine plants decreased from the model. Finally, the results of forest vegetation based on landuse/cover change increased Pinus densiflora to 38.9% and evergreen broad-leaved plants to 70% when it is compared to the current climate. But Quercus Spp. decreased 10.2% and alpine plants disappeared almost completely for most of the Korean Peninsula. These results were difficult to make a distinction between the increase of Pinus densiflora and the decrease of Quercus Spp. because of they both inhabit a similar environment on the Korean Peninsula.

Impact of Land Use Land Cover Change on the Forest Area of Okomu National Park, Edo State, Nigeria

  • Nosayaba Osadolor;Iveren Blessing Chenge
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.3
    • /
    • pp.167-179
    • /
    • 2023
  • The extent of change in the Land use/Land cover (LULC) of Okomu National Park (ONP) and fringe communities was evaluated. High resolution Landsat imagery was used to identify the major vegetation cover/land use systems and changes around the national park and fringe communities while field visits/ground truthing, involving the collection of coordinates of the locations was carried out to ascertain the various land cover/land use types identified on the images, and the extent of change over three-time series (2000, 2010 and 2020). The change detection was analyzed using area calculation, change detection by nature and normalized difference vegetation index (NDVI). The result of the classification and analysis of the LULC Change of ONP and fringe communities revealed an alarming rate of encroachment into the protected area. All the classification features analyzed had notable changes from 2000-2020. The forest, which was the dominant LULC feature in 2000, covering about 66.19% of the area reduced drastically to 36.12% in 2020. Agricultural land increased from 6.14% in 2000 to 34.06% in 2020 while vegetation (degraded land) increased from 27.18% in 2000 to 38.89% in 2020. The magnitude of the change in ONP and surroundings showed the forest lost -247.136 km2 (50.01%) to other land cover classes with annual rate change of 10%, implying that 10% of forest land was lost annually in the area for 20 years. The NDVI classification values of 2020 indicate that the increase in medium (399.62 km2 ) and secondary high (210.17 km2 ) vegetation classes which drastically reduced the size of the high (38.07 km2 ) vegetation class. Consequent disappearance of the high forests of Okomu is inevitable if this trend of exploitation is not checked. It is pertinent to explore other forest management strategies involving community participation.