• Title/Summary/Keyword: Vegetation canopy

Search Result 264, Processing Time 0.02 seconds

A Study on Vegetation Changes for 11years and Vegetation Structure in the Green Buffer Zone of Sihwa Industrial Complex (시화공단 완충녹지의 11년간(2006~2017년) 식생변화 및 식생구조 연구)

  • Choi, Jin-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.5
    • /
    • pp.81-96
    • /
    • 2018
  • The purpose of this study is to analyze the characteristics of vegetation changes and structures in the buffer green zone of Sihwa Industrial Complex and propose environmental, ecological and multi-functional vegetation management directions. The density of the Pinus thunbergii decreased from $23.1trees/100m^2$ in 2006 to $9.6trees/100m^2$ in 2017 due to the influence of thinning works. Its green volume increased from $0.97m^3/m^2$ to $2.02m^3/m^2$, contributing to the improvement of the atmospheric environment and promotion of biodiversity. The density of deciduous broad-leaved trees at the top maintained at $18{\sim}21trees/100m^2$. In the areas where the understory vegetation was removed, Pueraria lobata spread as an invasive plant and disturbed the forest. In the areas where the understory vegetation was not removed, various native plant species including the Rhus javanica and Celtis sinensis were introduced and contributed to the development of a forest in a multiple structure. There was a concern with the spread of Robinia pseudoacacia which developed into understory vegetation in Pinus thunbergii forest and some canopy forest. The study proposed vegetation management directions for the back, top and front side according to the physical structure of large-scale buffer green zone formed in a long linear form and the usage characteristics of adjacent land.

Development and Application of Impact Assessment Model of Forest Vegetation by Land Developments (개발사업에 따른 산림식생 영향평가모형 개발 및 적용)

  • Lee, Dong-Kun;Kim, Eun-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.6
    • /
    • pp.123-130
    • /
    • 2009
  • Fragmentation due to land developments causes disturbances and changes of composition in forest vegetation. The purpose of the study was to develop the impact assessment model for quantitative distance or degree of disturbance by land developments. This study conducted a survey about structure and composition of forest vegetation to determine degree of impact from land developments. The results of field survey, there was a difference in structure and composition of forest vegetation such as tree canopy, herbaceous cover, and number of vine and alien species the distances from edge to interior area such as 0m, 10m, 20m, 40m, and over 60m. To assess the disturbance of forest vegetation, the factors selected were the rate of vine's cover and appearance of alien species. The impact assessment model about vine species explained by a distance, forest patch size, type of forest fragmentation, and type of vegetation ($R^2$=0.44, p<0.001). The other model about alien species explained by a distance, type of forest fragmentation, type of vegetation, and width of road (85.9%, p<0.005). The models applied to Samsong housing development in Goyang-si, Gyunggi-do. The vines and alien species in the study area have had a substantial impact on forest vegetation from edge to 20 or 40m. The impact assessment models were high reliability for estimating impacts to land developments. The impact of forest vegetation by development activities could be minimized thorough the adoption of the models introduced at the stage of EIA.

Ecological Characteristic and Vegetation Structure of Pinus thunbergii Community in Coastal Forest of Busan Metropolitan City, Korea (부산광역시 해안림 곰솔군락의 식생구조 및 생태적 특성)

  • Shin, Hae-Seon;Lee, Sang-Cheol;Choi, Song-Hyun;Kang, Hyun-Mi
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.539-551
    • /
    • 2019
  • The purpose of this study is to understand the vegetation structure and ecological characteristics of the coastal forest Pinus thunbergii community in Busan Metropolitan City (BMC) and to establish reference information for the management of the coastal forest in BMC in the future. We set up 97 plots with an area of $100m^2$ each for the analysis and investigation of the vegetation characteristics. The analysis using the TWINSPAN and DCA techniques found seven community groups: Pinus thunbergii-Quercus aliena community, Pinus thunbergii-Eurya japonica(1) community, Pinus thunbergii-Eurya japonica(2) community, Pinus thunbergii-Quercus serrata community, Pinus thunbergii-Camellia japonica(1) community, Pinus thunbergii-Camellia japonica(2) community, and Pinus thunbergii-Eurya japonica-Camellia japonica community. According to the analysis of vegetation structure, Pinus thunbergii was a main dominant species at the canopy layer in all sites while Eurya japonica and Camellia japonica were dominant species at the understory layer. Pinus thunbergii-Quercus serrata community is predicted in the forest succession because of the competition between Pinus thunbergii and Quercus serrata in the canopy layer and the understory layer. As such, it is necessary to observe changes by continually monitoring this community. Tree species with strong salinity tolerance, including Pinus thunbergii, have formed community groups because of the environmental characteristics of coastal forests, strong with salinity tolerance species are forming community groups. Therefore, all community groups except for the Pinus thunbergii-Quercus serrata community will maintain the current vegetation structure unless drastic environmental changes occur.

Use of Remotely-Sensed Data in Cotton Growth Model

  • Ko, Jong-Han;Maas, Stephan J.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.4
    • /
    • pp.393-402
    • /
    • 2007
  • Remote sensing data can be integrated into crop models, making simulation improved. A crop model that uses remote sensing data was evaluated for its capability, which was performed through comparing three different methods of canopy measurement for cotton(Gossypium hirsutum L.). The measurement methods used were leaf area index(LAI), hand-held remotely sensed perpendicular vegetation index(PVI), and satellite remotely sensed PVI. Simulated values of cotton growth and lint yield showed reasonable agreement with the corresponding measurements when canopy measurements of LAI and hand-held remotely sensed PVI were used for model calibration. Meanwhile, simulated lint yields involving the satellite remotely sensed PVI were in rough agreement with the measured lint yields. We believe this matter could be improved by using remote sensing data obtained from finer resolution sensors. The model not only has simple input requirements but also is easy to use. It promises to expand its applicability to other regions for crop production, and to be applicable to regional crop growth monitoring and yield mapping projects.

Drone-based Vegetation Index Analysis Considering Vegetation Vitality (식생 활력도를 고려한 드론 기반의 식생지수 분석)

  • CHO, Sang-Ho;LEE, Geun-Sang;HWANG, Jee-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.21-35
    • /
    • 2020
  • Vegetation information is a very important factor used in various fields such as urban planning, landscaping, water resources, and the environment. Vegetation varies according to canopy density or chlorophyll content, but vegetation vitality is not considered when classifying vegetation areas in previous studies. In this study, in order to satisfy various applied studies, a study was conducted to set a threshold value of vegetation index considering vegetation vitality. First, an eBee fixed-wing drone was equipped with a multi-spectral camera to construct optical and near-infrared orthomosaic images. Then, GIS calculation was performed for each orthomosaic image to calculate the NDVI, GNDVI, SAVI, and MSAVI vegetation index. In addition, the vegetation position of the target site was investigated through VRS survey, and the accuracy of each vegetation index was evaluated using vegetation vitality. As a result, the scenario in which the vegetation vitality point was selected as the vegetation area was higher in the classification accuracy of the vegetation index than the scenario in which the vegetation vitality point was slightly insufficient. In addition, the Kappa coefficient for each vegetation index calculated by overlapping with each site survey point was used to select the best threshold value of vegetation index for classifying vegetation by scenario. Therefore, the evaluation of vegetation index accuracy considering the vegetation vitality suggested in this study is expected to provide useful information for decision-making support in various business fields such as city planning in the future.

Vegetation Succession and Vegetation Management of the Pinus densiflora S. et Z. Forest in the Beopjusa Area, Songnisan National $Park^{1a}$ (속리산국립공원 법주사지구 소나무림 식생천이와 식생관리 연구)

  • Lee, Kyong-Jae;Ki, Kyong-Seok;Choi, Jin-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.2
    • /
    • pp.208-219
    • /
    • 2009
  • This study is to establish a management method for conservation through comparison and analysis on vegetation structures of Pinus densiflora forest around Beopjusa area for past 17-year. The spatial range of the study was $3.6km^2$ from maintenance office to Beopjusa area. The analysis results of the actual vegetation showed that the ratio of vegetation were composed of 64.7% of Pinus densiflora forest, 3.2% of mixed forest of P. densiflora and deciduous broadleaf trees and 5.9% of deciduous broadleaf tree community out of overall area, 360ha. The type of P. densiflora forest were categorized into four communities; community having high potential of succession, community having low potential of it, the community being in the process of succession and community being in the process of natural selection. The succession tendency was in order of the community having low potential of succession(P. densiflora forest), having high potential of it(P. densiflora forest which is deciduous broadleaf trees are dominating in sub-canopy layer), being in the process of succession(P. densiflora-Prunus sargentii and P. densiflora-Quercus serrata community) and being in the process of natural selection(Q. serrata-P. densiflora and Q. aliena-P. densiflora community). In terms of vegetation management, P. densiflora forest having high potential of succession was needed to remove deciduous broadleaf trees in the sub-canopy layer and the community being in the process of succession was required to be pruning the branch in the canopy layer. Lastly, the community being in the process of natural selection was suggested to let it be in succession, since it is hard to be in the status of P. densiflora Forest.

A Study on Ecological Characteristics and Changes of Vegetation in Hamyangsangrim (함양상림 식생의 생태적 특성 변화 연구)

  • Kim, Dong-Wook;Lee, Seung-Joo;Lee, Soo-Dong;Kim, Ji-Seok;Han, Bong-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.4
    • /
    • pp.537-549
    • /
    • 2012
  • The purpose of this study was to provide data for the basic research to found the effective conservation and management plan for the Hamyangsangrim designated as Natural Monument No. 154 and surround areas by analyzing the ecological characteristics such as landuse and actual vegetation, plant community structure, soil chemical property and also to identify the tendency of the ecosystem changes through comparison with past studies. According to analysis the results, the landuse and actual vegetation of survey site was classified as 8 types which were forest, artificial greenspace, plaza and open-space, bare ground and the pavement, water bodies, facilities, agricultural land and etc.. It was also categorized as 38 types according to detailed characteristic. 15 kinds of forest vegetation community types comprising silva were classified among them. The changes of actual vegetation showed little variation that the Quercus serrata-Carpinus tschonoskii forest was the most widely distributed in 2003(forest area ratio is 48.3%) and 2010(forest area ratio is 48.1%), whereas, the Quercus serrata forest declined a more dramatic from 11.6% to 23.2%. The Quercus serrata-Carpinus tschonoskii forest increased sharply(11.6% ${\rightarrow}$ 23.2%) and also the Quercus serrata-Zelkova serrata forest increased steadily(2.2% ${\rightarrow}$ 7.9%). The agricultural land around forest was transformed into artificial green zone. Moreover, water bodies, bare ground and the pavement of areas have increased. In addition, the urbanized area has decreased because the damaged areas inside forest have been restored to the woodlands. According to the result of typical 6 types vegetation communities change, the middle layer trees grew up to the canopy layer trees and was formed the canopy layer structure. The middle layer trees expanded their forces widely. Also new species appeared. And the shrub individuals also more dramatically increased due to the growth of shrubs. The force of Quercus serrata declined as well. However the force of Carpinus tschonoskii and Zelkova serrata expanded and increased in the forest. It must be the result of the ecological vegetation succession and environmentally soundly health recovery by influence of the projects of forest surrounding environment improvement and limitation of access to forest have managed and maintained since 2003. Those sorts of changes seems to be going to develop continuously. In the future Carpinus tschonoskii and Zelkova serrata will not be only codominant in the canopy layer but also Carpinus Tschonoskii, Zelkova serrata, Meliosma myriantha, Sapium japonicum. Styrax obassia and Acer pseudo-sieboldianum will be codominant in the middle layer. As a result, the forest's codominance species are going to be changed such like that.

A Six-Layer SVAT Model for Energy and Mass Transfer and Its Application to a Spruce(Picea abies [L].Karst) Forest in Central Germany (독일가문비나무(Picea abies [L].Karst)림(林)에서의 Energy와 물질순환(物質循環)에 대(對)한 SLODSVAT(Six-Layer One-Dimensional Soil-Vegetation-Atmosphere-Transfer) 모델과 그 적용(適用))

  • Oltchev, A.;Constantin, J.;Gravenhorst, G.;Ibrom, A.;Joo, Yeong-Teuk;Kim, Young-Chai
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.2
    • /
    • pp.210-224
    • /
    • 1996
  • The SLODSVAT consists of interrelated submodels that simulate : the transfer of radiation, water vapour, sensible heat, carbon dioxide and momentum in two canopy layers determined by environmental conditions and ecophysiological properties of the vegetation ; uptake and storage of water in the "root-stem-leaf" system of plants ; interception of rainfall by the canopy layers and infiltration and storage of rain water in the four soil layers. A comparison of the results of modeling experiments and field micro-climatic observations in a spruce forest(Picea abies [L].Karst) in the Soiling hills(Germany) shows, that the SLODSVAT can describe and simulate the short-term(diurnal) as well as the long-term(seasonal) variability of water vapour and sensible heat fluxes adequately to natural processes under different environmental conditions. It proves that it is possible to estimate and predict the transpiration and evapotranspiration rates for spruce forest ecosystems on the patch and landscape scales for one vegetation period, if certain meteorological, botanical and hydrological information for the structure of the atmospheric boundary layer, the canopy and the soil are available.

  • PDF

Characteristics of Breeding Bird Community in Relation to Altitude and Vegetation in Jirisan National Park (지리산국립공원 해발고도와 식생에 따른 번식기 조류군집의 특성)

  • Lee, Do-Han;Kwon, Hye-Jin;Song, Ho-Kyung
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.5
    • /
    • pp.471-480
    • /
    • 2008
  • This study was conducted to investigate the characteristics of breeding bird community in relation to altitude and vegetation in Jirisan National Park. The survey was carried over 4 study sites by point counts method to figure out habitat environment and breeding bird community from March to August in 2006. The study results are summarized as follows: Total 32 species were recorded, and 27 species and density of 37.31 ea/ha in low altitude mixed forest, 23 species and 34.99 ea/ha in low altitude deciduous forest, 18 species and 23.95 ea/ha in high altitude mixed forest, 19 species and 20.21 ea/ha in high altitude deciduous forest, respectively. Eleven species were observed only in the low altitude sites, 4 species were observed only in the high altitude sites. Number of species and density were high in the low altitude sites, and they were high in the mixed forests. In nesting guild analysis, the low altitude sites are similarly found species number of three types but canopy nesting species in the high altitude sites are advent less. In foraging guild analysis, the species number of canopy foraging appeared most highly in all study sites. In the difference analysis of each species density. Four species which are showed the difference in the low altitude sites, owing to vegetation. Long-tailed Tit(Aegithalos caudatus) and Great tit(Parus major) are difference because of difference in volume of canopy layer, and Coal Tit(Parus ater) was difference because of coniferous forest preference quality. Four species(Hazel Grouse, Winter Wren, Pale Thrush, Yellow-throated Bunting) which are showed the difference of the density in the high altitude sites because of thick growth of the bush layer. Ten species which are showed the difference in study sites, owing to altitude. Oriental Cuckoo(Cuculus saturatus), Winter Wren(Troglodytes troglodytes), Siberian Blue Robin(Luscinia cyane), Arctic Warbler(Phylloscopus borealis), Coal Tit(Parus ater), and Yellow-throated Bunting(Emberiza elegans) appeared highly in the high altitude sites, Pale Thrush(Turdus pallidus), Long-taild Tit(Aegithalos caudatus), Varied Tit(Parus varius), and Eurasian Nuthatch(Sitta europaea) appeared highly in the low altitude sites. It seems that bush layer coverage volume and canopy layer total coverage volume do influences on the breeding bird community, because the bush layer was thick growth, and canopy layer coverage volume was difference. It would be needed the management and maintenance of bush layer coverage volume and canopy layer with multi-layer structure to increase foliage height diversity and total coverage volume for the protection and management of bird community in Jirisan National Park.

Effect of Gaps on Species Diversity in the Naturally Regenerated Mixed Broadleaved-Korean Pine Forest of the Xiaoxing'an Mountains, China

  • Jin, Guangze;Liu, Yanyan;Liu, Shuang;Kim, Ji-Hong
    • Journal of Ecology and Environment
    • /
    • v.30 no.4
    • /
    • pp.325-330
    • /
    • 2007
  • Recognizing the ecological importance of forest gap formation for forest community structure, we examined the differences in species diversity between forest gaps and closed canopy areas for trees and shrubs in three developmental stages (seedling, sapling I, and sapling II) in a typical mixed broadleaved-Korean pine forest. We randomly placed 100 sample plots ($2{\times}2m$ for seedling and sapling I, and $5{\times}5m$ for sapling II) in forest gap and closed canopy areas of a 9 ha permanent sample plot for vegetation surveys of plants of each developmental stage in each habitat type. Even though the formation of forest gaps encouraged the occurrence of gap-dependent species and increased overall species diversity, there were no significant differences in species richness among the three developmental stages for both tree and shrub species (p>0.05). Comparing the two types of sites, statistical tests revealed no difference in species richness for trees, but highly significant differences (p<0.01) between forest types for shrubs for seedlings and sapling I, but not sapling II. Analysis of variance test indicated that there were no significant differences in species diversity among the three developmental stages of tree species (p>0.05) for both Simpson and Shannon indices. The variance for shrub seedlings was significantly different between forest gaps and closed canopy areas, but not for sapling I and sapling II. The analysis showed that the species diversity in forest gaps was significantly different from that of closed canopy areas for seedling and sapling I (p<0.01), but not for sapling II (p>0.05).