• Title/Summary/Keyword: Vegetation area

Search Result 2,128, Processing Time 0.027 seconds

Vegetation Structure and Management Planning on the Historical Landscape of Pinus densiflora Forest in Guryong Valley, Chiak National Park (역사문화적 관점에서의 치악산국립공원 구룡계곡 소나무림의 식생구조 및 관리방안)

  • Oh, Hee-Young;Kang, Hyun-Kyung;Kim, Myeong-Seop;Back, Seung-Jun;Hong, Jeum-Kyu
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.6
    • /
    • pp.117-131
    • /
    • 2017
  • This study was conducted to draw vegetation landscape elements in the ancient literature, investigate plant community structure, understand vegetation structure, and suggest reasonal conservation management methods. As a result of analyzing ancient literature, geomorphological landscapes in Guryong valley were canyon landscape and valley surrounded in Mt. Chiak. Plant landscape factors were as followed. Rhododendron spp. spread around valley. Also, Pinus densiflora communities were distributed in Guryong valley around. Especially, the entrance zones of Guryong valley were described as covered with Pinus densiflora and Whangchangkumpyo(黃腸禁標). Therefore, it was estimated that entry of Guryong valley was covered with Pinus densiflora community landscape. As for current vegetation result, the main vegetation was divided into mixed deciduous broad-leaved trees community and Pinus densiflora community. As a result of analysis by TWINSPAN for community classification, five communities(Deciduous broadleaved trees, Pinus densiflora, Pinus densiflora-Abies holophylla, Abies holophylla, and Pinus koraiensis community) were classified. To maintain historic plant landscape and conserve crucial resources, Pinus densiflora community was classified as concentrated conservation management area($105,472m^2$). To maintain Pinus densiflora landscape which has high historical and cultural value of Guryong valley, it was considered that active density control of lower layer vegetation would be necessary. Accordingly, to conserve P. densiflora landscape, Whangchangkumpyo(?腸禁標), that area was separated into Pinus densiflora lower layer forest management area($84,029m^2$) and Pinus densiflora seedling conservation management area($21,443m^2$). In understory of Pinus densiflora lower layer flora, the target tree species for elimination and management were Quercus serrata and Quercus mongolica. They were $4{\sim}6trees/100m^2$ and their average diameter was 7.1cm. To preserve Pinus densiflora seedlings, areas with Sasa borealis, the ground vegetation of Pinus densiflora community, rate of 80% or more should be selected as priority management areas and concentrated elimination and management of Sasa borealis should be implemented. Likewise, traditional Pinus densiflora forest is a historically cultural heritage to preserve with sustainable interest and survey. Efficient management method through systematic monitoring system should be made.

The Analysis of Evergreen Tree Area Using UAV-based Vegetation Index (UAV 기반 식생지수를 활용한 상록수 분포면적 분석)

  • Lee, Geun-Sang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.15-26
    • /
    • 2017
  • The decrease of green space according to the urbanization has caused many environmental problems as the destruction of habitat, air pollution, heat island effect. With interest growing in natural view recently, proper management of evergreen tree which is lived even the winter season has been on the rise importantly. This study analyzed the distribution area of evergreen tree using vegetation index based on unmanned aerial vehicle (UAV). Firstly, RGB and NIR+RG camera were loaded in fixed-wing UAV and image mosaic was achieved using GCPs based on Pix4d SW. And normalized differences vegetation index (NDVI) and soil adjusted vegetation index (SAVI) was calculated by band math function from acquired ortho mosaic image. validation points were applied to evaluate accuracy of the distribution of evergreen tree for each range value and analysis showed that kappa coefficient marked the highest as 0.822 and 0.816 respectively in "NDVI > 0.5" and "SAVI > 0.7". The area of evergreen tree in "NDVI > 0.5" and "SAVI > 0.7" was $11,824m^2$ and $15,648m^2$ respectively, that was ratio of 4.8% and 6.3% compared to total area. It was judged that UAV could supply the latest and high resolution information to vegetation works as urban environment, air pollution, climate change, and heat island effect.

Changes of Understory Vegetation Structure for 10 Years in Long-Term Ecological Research Site at Mt. Gyebang (계방산 장기생태조사지에서 10년간 하층식생구조변화)

  • Cheon, Kwang Il;Chun, Jung Hwa;Yang, Hee Mun;Lim, Jong Hwan;Shin, Joon Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • This study was conducted to investigate the changes understory vegetation composition (shrub and herb layers) in Mt. Gyebang as a northern-temperate deciduous broadleaf forest. Tracheophytes were 146 taxa, consisting 56 families, 93 genera, 124 species, 17 varieties, 3 forma, 2 sub-species and 1 unknown taxa in research subject area. As species area curve analysis, herbaceous layer and shrub species have been decreased over time. As a result of Mantel-test, basal area of upper layer affects to understory vegetation change (p<0.0001). Mean importance value was dominated Lindera obtusiloba (21.585%), Rhododendron schlippenbachii (19.774%) in the shrub layer, identified Sasa borealis (14.082%) and Lindera obtusiloba (7.921%) in the herb layer. According to NMS analysis of shrub layer, Species characterized by strong correlation have been reduced as time goes by. And it reports different species as an increasing in basal area of the upper layer. Herb layer plots of the NMS analysis, Rhododendron schlippenbachii and Rhododendron mucronulatum consistently were affected in shrub layer. In consequence of MRPP-test for changes in vegetation composition, It was analyzed that there are no significant differences for vegetation composition changes on shrub layer in 5-10 years. As a changes of vegetation composition on herb layer were analyzed significantly, composition change of herb layer species was larger than shrub layer species in understory vegetation.

Vegetation of Jangdo wetland conserved area in South Korea and its management strategy (장도습지보호지역의 식생 특성과 관리방안)

  • Lee, Seung-Yeon;Hong, Yong-Sik;Jung, Heon-Mo;Lee, Eung-Pill;Kim, Eui-Joo;Park, Jae-Hoon;Jung, Young-Ho;Cho, Kyu-Tae;You, Young-Han
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.1
    • /
    • pp.109-118
    • /
    • 2019
  • This study was carried out to investigate the vegetation of wetland and terrestrial lands in Jangdo wetland conserved area in Korea and to analyze the characteristics of the vegetation changes in the recent years. From the plant community, there were evergreen broad-leaved forests of the Machilus thunbergii, Castanopsis cuspidata, and Machilus thunbergii-Castanopsis cuspidata communities. Moreover, there were deciduous broad-leaved forests of the Salix koreensis, Mallotus japonicus, Mallotus japonicus-Pueraria thunbergiana and Celtis sinensis communities. Additionally, there were shrub forests of the Rosa multiflora-Rubus hirsutus, grassland of Molinia japonica-Miscanthus sacchariflorus and Miscanthus sacchariflorus-Imperata cylindrica communities, and plantation forest of the Pseudosasa japonica community. The area of the wetland vegetation (15%) was much narrower than that of the terrestrial land vegetation (85%). Comparing these results with those of the past 10 years, the wetland plant communities decreased by one-third and the proportion of neutral or dry plant communities increased. In order to mitigate landization succession of the wetland and maintain native wetland vegetation in this area, the expansion of the Salix koreensis community must be controlled to a suitable scale. In addition, it is urgently required to remove the invasive non-wetland plants, such as Pseudosasa japonica and Pueraria thunbergiana.

Identification of riparian vegetation using Spectral Mixture Analysis of multi-temporal Landsat Imagery

  • Kim, Sang-Wook;Park, Chong-Hwa
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.175-177
    • /
    • 2003
  • To monitor riparian wetlands as one of complex natural ecosystems using remotely sensed data, we need to concurrently consider vegetation, soil and water which constitute complicated wetland ecosystems. To identify riparian distribution we adopted linear Spectral Mixture Analysis in order to improve identification accuracy of riparian areas. This study has indicated that linear SMA adopting tasseled cap endmember selection is an enhanced routine for Identification of riparian wetlands and phenologically autumn imagery is more appropriate to detect riparian vegetation in the Paldang water catchment area.

  • PDF

Effects of Road on Bird Communities in Forest Areas (산림 지역의 조류 군집에 대한 도로의 영향)

  • 허위행;임신재;이우신
    • Korean Journal of Environment and Ecology
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • This study was conducted to investigate the effects of road on bird community by line transect census method from May 2000 to January 2001 in Mt. Geumsan, Namhae-Gun, Kyeongsangnam-do. Canopy layer was more developed in forest area than road area. Understory vegetation of road area was more developed than forest area. Twenty six and twenty three bird species were observed in road and forest area, respectively, White's thrush and ashy minivet were observed just only in forest area, and Siberian blue robin, blue-and-white flycatcher and gold crest were in road area. The birds being to bush nesting and foraging guilds in road area were more than forest area. It is known that the road construction was negatively affected on bird community. However, road construction would be not so negative on bird community according to the results of thie study. It would be needed the maintenance of upper canopy layer and understory vegetation to reduce negative effect of road on bird communities in forest area.

Ecological Management Plan and Biotope Structure of Namsan Urban Natural Park in Seoul (서울 남산도시자연공원의 비오톱 구조 및 생태적 관리방안)

  • Lee Kyong-Jae;Han Bong-Ho;Lee Soo-Dong
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.5
    • /
    • pp.102-118
    • /
    • 2004
  • The purpose of this study was to propose an ecological management plan by the comprehensive analysis of biotope structures on Namsan Urban Natural Park in Seoul. Classified by actual vegetation, structure of layer and vegetation damage, biotope structures were composed of forest area, compact management area, herb area, cultivated area and non-ecology(urban) area. Succession had seened to stop in the Native forest. Artifical forest was divided into two types. The first, upper layer, was too dense to accommodate lower layer plants, the other case was the appearance of Quercus spp. and the first stage plants of succession following the declination of the upper layer plants. The soil pH of Nam-san Urban Park was 4.21∼4.51, which meant the soil was becoming acid. As the result of acidity, leaching of available nutrition(K/sup +/, NH₄/sup +/, Ca/sup ++/ etc.) was immediately influenced by the natural ecosystem, influence of acid rain was disturbed to becoming organic matter which was use to plants. In the case of a biotope structure management plan, the urban area was prohibited to spread outside. Cultivated and herb area was regenerated to natural forest. In the forest area, the compact management area was maintained with its present condition, and then it is desirable to make a preservation area and to plant shrubs. Planted Pinus densiflora Community was needed to eliminate competitive species of canopy layer, and plant shrubs. Management of deciduous broad-leaved Comm. was maintained in its present conditionand it is desirable to raise the diversity of the understory and shrub layer. The management of the artifical forest seems to be suitable for Q. spp. community. The care of naturalized plants prevents the expansion and restores the structure of wild plants. The soil management was a marked restoration soil ecosystem in order to prevent soil acid and drying.

안동 임하댐 일대의 삼림식생에 대한 군락생태학적 연구

  • 송종석;김헌규
    • The Korean Journal of Ecology
    • /
    • v.16 no.4
    • /
    • pp.439-457
    • /
    • 1993
  • The present study was undertaken to classify and describe the forest vegetation on Imha-dam area, located at the northern part of Kyungsang-pookdo, Korea by the phytosociological method of the Z-M school. The field investigations were carried out in 60 plots around the dam area from May 1, 1991 to October 10, 1992. The vegetation data obtained were classified by the table comparison method. As a result, the following vegetation units were recognized: A. Pinus densiflova community A-a. Miscanthus sinensis group A-b. Carex humilzs group A-c. Typical group B. Quercetum variabili-serratae Kobayashi, Muranaga et Takeda 1976 C. Robinin pseudo-acacia-Conzmeli~ta comnzultis community D. Larix leptolepis community The vascular plant species of these forest communities consist of 63 families, 144 genera, 191 species and 30 varieties. Also the relationship of the vegetation units with their environments such as altitude, slope, topography and soil condition was discussed here. On the basis of the floristic composition, life-form spectrum and soil analysis, a sere for the forest vegetation was proposed as follows: Rohinia pseitdo-acacia-Conz~neli~za communis community and Larix leptolepis community $\rightarrow$ Pinus densiflora community $\rightarrow$ Quercetunz variahili-serratae $\rightarrow$ Quercus mongolica community. Lastly, relating to the nature conservation of dam area, some of plans were discussed.

  • PDF

Forest Vegetation of Southern Area of Mt. Naejang National Park, Korea (내장산 남부지역의 삼림식생)

  • Kil, Bong-Seop;Kim, Jeong-Un;Kim, Young-Sik
    • The Korean Journal of Ecology
    • /
    • v.23 no.3
    • /
    • pp.231-240
    • /
    • 2000
  • The forest vegetation of southern area of Mt. Naejang National Park, Korea was classified into nine communities of Zelkova serrata, Torreya nucifera, Quercus aliena, Carpinus tschonoskii, C. laxifora Q. variabilis, Q. serrata, Q. mongolica and Pinus densiflora based on the floristic composition and physiognomy Q. mongolica community distributes at elevation above 600 m in sea level, Q. variabilis community on xeric ridges and Q. serrata community on xeric slopes at elevation 250 m∼600 m, C. tschonoskii community on mesic sites and C. laxiflora community on xeric ones at elevation 200 m∼400 m,Q. aliena community on mesic slopes and Zelkova serrata community on mesic stony slopes at stream sides, Torreya nucifera community around the Paegyang temple and Pinus densiflora community on lower parts or ridges of mountain. The actual vegetation map of the area was made in scale 1: 25,000, including above mentioned nine plant communities.

  • PDF

Vegetation Classification and Biomass Estimation using IKONOS Imagery in Mt. ChangBai Mountain Area (IKONOS 위성영상을 이용한 중국 장백산 일대의 식생분류 및 바이오매스 추정)

  • Cui, Gui-Shan;Lee, Woo-Kyun;Zhu, Wei-Hong;Lee, Jongyeol;Kwak, Hanbin;Choi, Sungho;Kwak, Doo-Ahn;Park, Taejin
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.356-364
    • /
    • 2012
  • This study was to estimate the biomass of Mt. Changbai mountain area using the IKONOS imagery and field survey data. Then, we prepared the regression function using the vegetation index derived from the IKONOS and biomass estimated from field measured data of previous studies, respectively. The five vegetation index which used in the regression model was SAVI, NDVI, SR, ARVI, and EVI. As a result, the rank of the R-square from coefficient of correlation was as follow, SAVI(0.84), NDVI(0.73), SR(0.59), ARVI(0.0036), EVI(0.0026). Finally, we estimated the biomass of non-measured area using the Soil Adjusted Vegetation Index (SAVI). This study can be used as reference methodology for the estimation of carbon sinks of primary forest.