• Title/Summary/Keyword: Vegetation Modeling

Search Result 126, Processing Time 0.025 seconds

The Environmental and Economic Effects of Green Area Loss on Urban Areas (도시지역에서의 녹지상실의 환경적 경제적 효과)

  • Kim, Jae-Ik;Yeo, Chang-Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.20-29
    • /
    • 2006
  • Modeling urban climate caused by land use conversion is critical for human welfare and sustainable development, but has hampered because detailed information on urban characteristics is hard to obtain. With the advantage of satellite observations and the new statistical boundary system, this paper measures the economic and environmental effects of green area loss due to land use conversion in urban areas. To perform this purpose, data were collected from the various sources basic statistical unit data from the National Statistical Office, digital maps from the National Geographic Information Institute, satellite images, and field surveys when necessary. All data (maps and attributes) are built into the geographic information system (GIS). This paper also utilizes Landsat TM 5 imagery of Daegu city to derive vegetation index and to measure average surface temperature. The satellite data were examined using standard image processing software, ERDAS IMAGINE, and the results of the digital processing were presented with ARCVIEW(v.3.3). SAS package was used to perform statistical analyses. This study presents that there exists a strong relationship between land use change and climatic change as well as land price change. Based on results of the analysis, this paper suggests that planners should implement effective tools and policies of urban growth management to detect environmental quality and to make right decisions on policies concerning smart urban growth.

  • PDF

Soil Moisture Modelling at the Topsoil of a Hillslope in the Gwangneung National Arboretum Using a Transfer Function (전이함수를 통한 광릉 산림 유역의 토양수분 모델링)

  • Choi, Kyung-Moon;Kim, Sang-Hyun;Son, Mi-Na;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.2
    • /
    • pp.35-46
    • /
    • 2008
  • Soil moisture is one of the important components in hydrological processes and also controls the subsurface flow mechanism at a hillslope scale. In this study, time series of soil moisture were measured at a hillslope located in Gwangneung National Arboretum, Korea using a multiplex Time Domain Reflectometry(TDR) system measuring soil moisture with bi-hour interval. The Box-Jenkins transfer function and noise model was used to estimate spatial distributions of soil moisture histories between May and September, 2007. Rainfall was used as an input parameter and soil moisture at 10 cm depth was used as an output parameter in the model. The modeling process consisted of a series of procedures(e.g., data pretreatment, model identification, parameter estimation, and diagnostic checking of selected models), and the relationship between soil moisture and rainfall was assessed. The results indicated that the patterns of soil moisture at different locations and slopes along the hillslope were similar with those of rainfall during the measurment period. However, the spatial distribution of soil moisture was not associated with the slope of the monitored location. This implies that the variability of the soil moisture was determined more by rainfall than by the slope of the site. Due to the influence of vegetation activity on soil moisture flow in spring, the soil moisture prediction in spring showed higher variability and complexity than that in early autumn did. This indicates that vegetation activity is an important factor explaining the patterns of soil moisture for an upland forested hillslope.

Prediction of Carbon Accumulation within Semi-Mangrove Ecosystems Using Remote Sensing and Artificial Intelligence Modeling in Jeju Island, South Korea (원격탐사와 인공지능 모델링을 활용한 제주도 지역의 준맹그로브 탄소 축적량 예측)

  • Cheolho Lee;Jongsung Lee;Chaebin Kim;Yeounsu Chu;Bora Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.161-170
    • /
    • 2023
  • We attempted to estimate the carbon accumulation of Hibiscus hamabo and Paliurus ramosissimus, semimangroves native to Jeju Island, by remote sensing and to build an artificial intelligence model that predicts its spatial variation with climatic factors. The aboveground carbon accumulation of semi-mangroves was estimated from the aboveground biomass density (AGBD) provided by the Global Ecosystem Dynamics Investigation (GEDI) lidar upscaled using the normalized difference vegetation index (NDVI) extracted from Sentinel-2 images. In Jeju Island, carbon accumulation per unit area was 16.6 t C/ha for H. hamabo and 21.1 t C/ha for P. ramosissimus. Total carbon accumulation of semi-mangroves was estimated at 11.5 t C on the entire coast of Jeju Island. Random forest analysis was applied to predict carbon accumulation in semi-mangroves according to environmental factors. The deviation of aboveground biomass compared to the distribution area of semi-mangrove forests in Jeju Island was calculated to analyze spatial variation of biomass. The main environmental factors affecting this deviation were the precipitation of the wettest month, the maximum temperature of the warmest month, isothermality, and the mean temperature of the wettest quarter. The carbon accumulation of semi-mangroves predicted by random forest analysis in Jeju Island showed spatial variation in the range of 12.0 t C/ha - 27.6 t C/ha. The remote sensing estimation method and the artificial intelligence prediction method of carbon accumulation in this study can be used as basic data and techniques needed for the conservation and creation of mangroves as carbon sink on the Korean Peninsula.

Modeling of Vegetation Phenology Using MODIS and ASOS Data (MODIS와 ASOS 자료를 이용한 식물계절 모델링)

  • Kim, Geunah;Youn, Youjeong;Kang, Jonggu;Choi, Soyeon;Park, Ganghyun;Chun, Junghwa;Jang, Keunchang;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.627-646
    • /
    • 2022
  • Recently, the seriousness of climate change-related problems caused by global warming is growing, and the average temperature is also rising. As a result, it is affecting the environment in which various temperature-sensitive creatures and creatures live, and changes in the ecosystem are also being detected. Seasons are one of the important factors influencing the types, distribution, and growth characteristics of creatures living in the area. Among the most popular and easily recognized plant seasonal phenomena among the indicators of the climate change impact evaluation, the blooming day of flower and the peak day of autumn leaves were modeled. The types of plants used in the modeling were forsythia and cherry trees, which can be seen as representative plants of spring, and maple and ginkgo, which can be seen as representative plants of autumn. Weather data used to perform modeling were temperature, precipitation, and solar radiation observed through the ASOS Observatory of the Korea Meteorological Administration. As satellite data, MODIS NDVI was used for modeling, and it has a correlation coefficient of about -0.2 for the flowering date and 0.3 for the autumn leaves peak date. As the model used, the model was established using multiple regression models, which are linear models, and Random Forest, which are nonlinear models. In addition, the predicted values estimated by each model were expressed as isopleth maps using spatial interpolation techniques to express the trend of plant seasonal changes from 2003 to 2020. It is believed that using NDVI with high spatio-temporal resolution in the future will increase the accuracy of plant phenology modeling.

Habitat Analysis Study of Honeybees(Apis mellifera) in Urban Area Using Species Distribution Modeling - Focused on Cheonan - (종분포모형을 이용한 도시 내 양봉꿀벌 서식환경 분석 연구 - 천안시를 중심으로 -)

  • Kim, Whee-Moon;Song, Won-Kyong;Kim, Seoung-Yeal;Hyung, Eun-Jeong;Lee, Seung-Hyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.3
    • /
    • pp.55-64
    • /
    • 2017
  • The problem of the population number of honeybees that is decreasing not only domestically but also globally, has a great influence on human beings and the entire ecosystem. The habitat of honeybees is recognized to be superior in urban environment rather than rural environment, and predicting for habitat assessment and conservation is necessary. Based on this, we targeted Cheonan City and neighboring administrative areas where the distribution of agricultural areas, urban areas, and forest areas is displayed equally. In order to predict the habitat preferred by honeybees, we apply the Maxent model what based on the presence information of the species. We also selected 10 environmental variables expected to influence honeybees habitat environment through literature survey. As a result of constructing the species distribution model using the Maxent model, 71.7% of the training data were shown on the AUC(Area Under Cover) basis, and it was be confirmed with an area of 20.73% in the whole target area, based on the 50% probability of presence of honeybees. It was confirmed that the contribution of the variable has influence on land covering, distance from the forest, altitude, aspect. Based on this, the possibility of honeybee's habitat characteristics were confirmed to be higher in wetland environment, in agricultural land, close to forest and lower elevation, southeast and west. The prediction of these habitat environments has significance as a lead research that presents the habitat of honeybees with high conservation value of ecosystems in terms of urban space, and it will be useful for future urban park planning and conservation area selection.

Adjustment of A Simplified Satellite-Based Algorithm for Gross Primary Production Estimation Over Korea

  • Pi, Kyoung-Jin;Han, Kyung-Soo;Kim, In-Hwan;Lee, Tae-Yoon;Jo, Jae-Il
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.3
    • /
    • pp.275-291
    • /
    • 2013
  • Monitoring the global Gross Primary Pproduction (GPP) is relevant to understanding the global carbon cycle and evaluating the effects of interannual climate variation on food and fiber production. GPP, the flux of carbon into ecosystems via photosynthetic assimilation, is an important variable in the global carbon cycle and a key process in land surface-atmosphere interactions. The Moderate-resolution Imaging Spectroradiometer (MODIS) is one of the primary global monitoring sensors. MODIS GPP has some of the problems that have been proven in several studies. Therefore this study was to solve the regional mismatch that occurs when using the MODIS GPP global product over Korea. To solve this problem, we estimated each of the GPP component variables separately to improve the GPP estimates. We compared our GPP estimates with validation GPP data to assess their accuracy. For all sites, the correlation was close with high significance ($R^2=0.8164$, $RMSE=0.6126g{\cdot}C{\cdot}m^{-2}{\cdot}d^{-1}$, $bias=-0.0271g{\cdot}C{\cdot}m^{-2}{\cdot}d^{-1}$). We also compared our results to those of other models. The component variables tended to be either over- or under-estimated when compared to those in other studies over the Korean peninsula, although the estimated GPP was better. The results of this study will likely improve carbon cycle modeling by capturing finer patterns with an integrated method of remote sensing.

A Single Cell Multimedia Fate Model for Endocrine Disrupting Chemicals

  • Park, Kyunghee;Junheon Youn;Daeil Kang;Lee, Choong;Lee, Dongsoo;Jaeryoung Oh;Sunghwan Jeon;Jingyun Na
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.149-149
    • /
    • 2003
  • To understand environmental paths of the transport and accumulation of endocrine disrupting chemicals (EDCs), a single cell multimedia fate model has been constructed and evaluated. The EDCs of concern were PAHs, Organochlorine Pesticides (OCPs), PCBs, Alkyl phenols, and phthalates. An evaluation model was designed for the multimedia distribution, including air, water, soil, sediment and vegetation. This model was verified using reported values and via monitoring data. Based on collected data, the distribution trends of EDCs with respect to environmental media were analyzed. Those results have applied to the model for the prediction of the spatial and temporal distribution of EDCs in Seoul. Especially, phenol compound, phthalates, PAHs, PCBs and organochlorine pesticides were estimated and the model was verified. This model was successfully conducted to environmental media, such as air (vapor and suspended particles), soils (forest soil, bare soil, and cement-concrete covered soil), water (dissolved and suspended solids), sediment, trees (deciduous and coniferous). The discrepancies between the model prediction and the measured data are approximately within or near a factor of 10 for the PAHs of three rings through that of six rings, implying that multimedia distribution of the PAHs could be predicted with a factor of 10. Concerning about the air equilibrium may be assumed, a fugacity at steady state is similar in all environmental media. Considering the uncertainties of this model, the use of equilibrium models may be sufficient for assessing chemical fates. In this study, a suggestion was made that modeling and estimation of chemicals in environmental multimedia be rigorously evaluated using the measured flux data. In addition, these data should be obtained, for example, from the precise and standardized inventory of the target chemicals. The model (EDC Seoul) will be refined in an on-going research effort and will be used to support decision-making concerning the management of EDCs.

  • PDF

Numerical Simulation of Mean Flows and Turbulent Structures of Partly-Vegetated Open-Channel Flows using the Nonlinear k-ε Model (비선형 k-ε 모형을 이용한 부분 식생 개수로 흐름의 평균흐름 및 난류구조 수치모의)

  • Choi, Seongwook;Choi, Sung-Uk;Kim, Taejoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.813-820
    • /
    • 2014
  • This study presents a numerical modeling of mean flow and turbulence structures of partly-vegetated open-channel flows. For this, Reynolds-averaged Navier-Stokes equations with vegetation drag terms are solved numerically using the non-linear k-${\varepsilon}$ model. The numerical model is applied to laboratory experiments of Nezu and Onitsuka (2001), and simulated results are compared with data from measurement and computations by Kang and Choi's (2006) Reynolds stress model. The simulation results indicate that the proposed numerical model simulates the mean flow well. Twin vortices are found to be generated at the interface between vegetated and non-vegetated zones, where turbulence intensity and Reynolds stress show their maximums. The model simulates the pattern of the Reynolds stress well but under-predicts the intensity of Reynolds stress slightly.

An Efficiency Assessment for Reflectance Normalization of RapidEye Employing BRD Components of Wide-Swath satellite

  • Kim, Sang-Il;Han, Kyung-Soo;Yeom, Jong-Min
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.303-314
    • /
    • 2011
  • Surface albedo is an important parameter of the surface energy budget, and its accurate quantification is of major interest to the global climate modeling community. Therefore, in this paper, we consider the direct solution of kernel based bidirectional reflectance distribution function (BRDF) models for retrieval of normalized reflectance of high resolution satellite. The BRD effects can be seen in satellite data having a wide swath such as SPOT/VGT (VEGETATION) have sufficient angular sampling, but high resolution satellites are impossible to obtain sufficient angular sampling over a pixel during short period because of their narrow swath scanning when applying semi-empirical model. This gives a difficulty to run BRDF model inferring the reflectance normalization of high resolution satellites. The principal purpose of the study is to estimate normalized reflectance of high resolution satellite (RapidEye) through BRDF components from SPOT/VGT. We use semi-empirical BRDF model to estimated BRDF components from SPOT/VGT and reflectance normalization of RapidEye. This study used SPOT/VGT satellite data acquired in the S1 (daily) data, and within this study is the multispectral sensor RapidEye. Isotropic value such as the normalized reflectance was closely related to the BRDF parameters and the kernels. Also, we show scatter plot of the SPOT/VGT and RapidEye isotropic value relationship. The linear relationship between the two linear regression analysis is performed by using the parameters of SPOTNGT like as isotropic value, geometric value and volumetric scattering value, and the kernel values of RapidEye like as geometric and volumetric scattering kernel Because BRDF parameters are difficult to directly calculate from high resolution satellites, we use to BRDF parameter of SPOT/VGT. Also, we make a decision of weighting for geometric value, volumetric scattering value and error through regression models. As a result, the weighting through linear regression analysis produced good agreement. For all sites, the SPOT/VGT isotropic and RapidEye isotropic values had the high correlation (RMSE, bias), and generally are very consistent.

Using Spatial Data and Land Surface Modeling to Monitor Evapotranspiration across Geographic Areas in South Korea (공간자료와 지면모형을 이용한 면적증발산 추정)

  • Yun J. I.;Nam J. C.;Hong S. Y.;Kim J.;Kim K. S.;Chung U.;Chae N. Y.;Choi T. J
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.3
    • /
    • pp.149-163
    • /
    • 2004
  • Evapotranspiration (ET) is a critical component of the hydrologic cycle which influences economic activities as well as the natural ecosystem. While there have been numerous studies on ET estimation for homogeneous areas using point measurements of meteorological variables, monitoring of spatial ET has not been possible at landscape - or watershed - scales. We propose a site-specific application of the land surface model, which is enabled by spatially interpolated input data at the desired resolution. Gyunggi Province of South Korea was divided into a regular grid of 10 million cells with 30m spacing and hourly temperature, humidity, wind, precipitation and solar irradiance were estimated for each grid cell by spatial interpolation of synoptic weather data. Topoclimatology models were used to accommodate effects of topography in a spatial interpolation procedure, including cold air drainage on nocturnal temperature and solar irradiance on daytime temperature. Satellite remote sensing data were used to classify the vegetation type of each grid cell, and corresponding spatial attributes including soil texture, canopy structure, and phenological features were identified. All data were fed into a standalone version of SiB2(Simple Biosphere Model 2) to simulate latent heat flux at each grid cell. A computer program was written for data management in the cell - based SiB2 operation such as extracting input data for SiB2 from grid matrices and recombining the output data back to the grid format. ET estimates at selected grid cells were validated against the actual measurement of latent heat fluxes by eddy covariance measurement. We applied this system to obtain the spatial ET of the study area on a continuous basis for the 2001-2003 period. The results showed a strong feasibility of using spatial - data driven land surface models for operational monitoring of regional ET.