• Title/Summary/Keyword: Vegetation Cover

Search Result 545, Processing Time 0.023 seconds

Analysis of Land Cover Changes Based on Classification Result Using PlanetScope Satellite Imagery

  • Yoon, Byunghyun;Choi, Jaewan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.671-680
    • /
    • 2018
  • Compared to the imagery produced by traditional satellites, PlanetScope satellite imagery has made it possible to easily capture remotely-sensed imagery every day through dozens or even hundreds of satellites on a relatively small budget. This study aimed to detect changed areas and update a land cover map using a PlanetScope image. To generate a classification map, pixel-based Random Forest (RF) classification was performed by using additional features, such as the Normalized Difference Water Index (NDWI) and the Normalized Difference Vegetation Index (NDVI). The classification result was converted to vector data and compared with the existing land cover map to estimate the changed area. To estimate the accuracy and trends of the changed area, the quantitative quality of the supervised classification result using the PlanetScope image was evaluated first. In addition, the patterns of the changed area that corresponded to the classification result were analyzed using the PlanetScope satellite image. Experimental results found that the PlanetScope image can be used to effectively to detect changed areas on large-scale land cover maps, and supervised classification results can update the changed areas.

Land Cover Classification Map of Northeast Asia Using GOCI Data

  • Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.83-92
    • /
    • 2019
  • Land cover (LC) is an important factor in socioeconomic and environmental studies. According to various studies, a number of LC maps, including global land cover (GLC) datasets, are made using polar orbit satellite data. Due to the insufficiencies of reference datasets in Northeast Asia, several LC maps display discrepancies in that region. In this paper, we performed a feasibility assessment of LC mapping using Geostationary Ocean Color Imager (GOCI) data over Northeast Asia. To produce the LC map, the GOCI normalized difference vegetation index (NDVI) was used as an input dataset and a level-2 LC map of South Korea was used as a reference dataset to evaluate the LC map. In this paper, 7 LC types(urban, croplands, forest, grasslands, wetlands, barren, and water) were defined to reflect Northeast Asian LC. The LC map was produced via principal component analysis (PCA) with K-means clustering, and a sensitivity analysis was performed. The overall accuracy was calculated to be 77.94%. Furthermore, to assess the accuracy of the LC map not only in South Korea but also in Northeast Asia, 6 GLC datasets (IGBP, UMD, GLC2000, GlobCover2009, MCD12Q1, GlobeLand30) were used as comparison datasets. The accuracy scores for the 6 GLC datasets were calculated to be 59.41%, 56.82%, 60.97%, 51.71%, 70.24%, and 72.80%, respectively. Therefore, the first attempt to produce the LC map using geostationary satellite data is considered to be acceptable.

Modeling of LULC Dynamics in Bekasi District-Indonesia by Linking NDVI Measurement and Socio-Economic Indicators

  • Mustafa, Adi Junjunan;Tateishi, Ryutaro
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.516-518
    • /
    • 2003
  • This study discusses an effort to build a model to link normalized difference vegetation indices (NDVI) and socio-economic indicators derived from village survey (1990, 1993, 1996, and 2000) statistical data in Bekasi, West Java, Indonesia. Socio-economics indicators of sub-district level, in this study the number of agricultural households (AH), are aggregated from village level data. NDVI from Landsat-TM resolution data (1989 and 1997) are computed to detect land use/land cover (LULC) dynamics in the sub-district areas. Attention is mainly paid on the examination of agricultural land cover changing in the sub-district level. NDVI measurements might be used to predict AH dynamics as showed by computed linear regression models.

  • PDF

Assessment of riparian buffers for reducing pollution according to land-cover pattern using RS and GIS

  • Ha, Sung-Ryong;Lee, Seung-Chul;Ko, Chang-Hwan;Jo, Yun-Won
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.445-449
    • /
    • 2006
  • Diffuse pollution has been considering as a major source of the quality deterioration of water resources. The establishment of riparian vegetation strips or buffers along those areas of water bodies is used to reduce the threat of diffuse pollution. Remote sensing offers a means by which critical areas could be identified, so that subsequent action toward the establishment of riparian zones can be taken. On the behalf of KOMPSAT-2 satellite imagery as a high resolution spatial data, Landsat TM satellite data are used to aquire the land cover for the riparian buffers studied. This investigation aims to assess the riparian buffers established on the upper Geum river as a pollution mitigation. Through comparing the delineation of riparian buffer zones developed with the existing zones established by the government, we can find the critical distortion points of the existing riparian buffer zone.

An Application of Canonical Analysis on the Distribution of Lichens in Mt. Duckyuoo (덕유산 지의식물 분포에 대한 정준분석법의 적용연구)

  • Park, Seung Tai
    • The Korean Journal of Ecology
    • /
    • v.9 no.3
    • /
    • pp.135-147
    • /
    • 1986
  • The simplification and the searching trends of complex data which assumed relationship between predictor variables and object variables are one of primary objective of ecological research. This study was aimed to apply cononical analysis consisting of canonical correlation analysis and canonical variate analysis related to lichen vegetation and several environmental variables which are elevation, height on grond, exposure side and cover values. Data collected from the Duckyoo National Park in August 1985. Lichen species was ranked by eqivocation information theory with cover values. Canonical correlation analysis was applied to one data set both set both environmental variables and lichem family. In order to make two sets of data matrix the scale of position vector ordination was calculated from the vector scalar product for lichen species. Canonical variate analysis was applied to rearranged data which was made by interval class code for environmental variables. The sharpness values was calculated in frequency of cotingency tables and the dispersion profiles of each species in classes of environmental variables was designed to extract component values based on the decomposition of expected frequencies in contingency table. The results of canonical correlation analysis revealed canonical first correlation value 0.815(89%), and second correlation value 0.083(11%). Significance test showed that the hypothesis of joint mutuallity of canonical correlation is accepted (P>0.05). The relation between canonical score of vegetation variables and that of environmental variable indicated linear tendency.

  • PDF

Change Detection of the Tonle Sap Floodplain, Cambodia, using ALOS PALSAR Data

  • Trung, Nguyen Van;Choi, Jung-Hyun;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.287-295
    • /
    • 2010
  • Water level of the Tonle Sap is largely influenced by the Mekong River. During the wet season, the lacustrine landform and vegetated areas are covered with water. Change detection in this area provides information required for human activities and sustainable development around the Tonle Sap. In order to detect the changes in the Tonle Sap floodplain, fifteen ALOS-PALSAR L-band data acquired from January 2007 to January 2009 and examined in this study. Since L-band is able to penetrate into vegetation cover, it enables us to study the changes according to water level of floodplain developed in the rainforest. Four types of images were constructed and studied include 1) ratio images, 2) correlation coefficient images, 3) texture feature ratio images and 4) multi-color composite images. Change images (in each 46 day interval) extracted from the ratio images, coherence images and texture feature ratio images were formed for detecting land cover change. Two RGB images are also obtained by compositing three images acquired in the early, in the middle and at the end of the rainy season in 2007 and 2008. Combination of the methods results that the change images present the relationship between vegetation and water level, leaf fall forest as well as cultivation and harvest crop.

Mapping and Analyzing the Park Cooling Intensity in Mitigation of Urban Heat Island Effect in Lahore, Pakistan

  • Hanif, Aysha;Nasar-u-Minallah, Muhammad;Zia, Sahar;Ashraf, Iqra
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.127-137
    • /
    • 2022
  • Urban Heat Island (UHI) effect has been widely studied as a global concern of the 21st century. Heat generation from urban built-up structures and anthropogenic heat sources are the main factors to create UHIs. Unfortunately, both factors are expanding rapidly in Lahore and accelerating UHI effects. The effects of UHI are expanding with the expansion of impermeable surfaces towards urban green areas. Therefore, this study was arranged to analyze the role of urban cooling intensity in reducing urban heat island effects. For this purpose, 15 parks were selected to analyze their effects on the land surface temperature (LST) of Lahore. The study obtained two images of Landsat-8 based on seasons: the first of June-2018 for summer and the second of November-2018 for winter. The LST of the study area was calculated using the radiative transfer equation (RTE) method. The results show that the theme parks have the largest cooling effect while the linear parks have the lowest. The mean park LST and PCI of the samples are also positively correlated with the fractional vegetation cover (FVC) and normalized difference water index (NDWI). So, it is concluded that urban parks play a positive role in reducing and mitigating LST and UHI effects. Therefore, it is suggested that the increase of vegetation cover should be used to develop impervious surfaces and sustainable landscape planning.

Do Physiognomically Designated Protected Areas Match Well with Ecological Data based upon Diversity Indices and Ordination? Implications for Urban Forest Conservation

  • Kee Dae Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.5
    • /
    • pp.329-341
    • /
    • 2023
  • We surveyed the vegetation of an ecological landscape preservation area (legally protected conservation areas or national parks) and the surrounding areas of Mt. Cheonggye, Republic of Korea, to explore the conservation implications for preservation areas and surrounding transition areas. We calculated diversity indices to identify the properties of the preservation and surrounding areas that are relevant to conservation efforts. We then compared the plant community composition between the areas using field and quadrat surveys in the preservation and surrounding areas. The cover of the dominant species in all tree and herb layers was markedly higher in the preservation area than in the peripheral zones. The species richness indices were significantly higher in the preservation area than in the peripheral zones. Ordination using detrended canonical correspondence analyses showed that the cover of the dominant tree species and rocks could explain the distribution of plant species in the Cartesian space of the ordination. Our results demonstrate that physiognomically designated protected areas match well with ecological data based on diversity indices and ordination analyses and that disturbances in the areas surrounding the ecological landscape of preservation areas can have considerable impacts on plant diversity indices. Hence, the preservation and management of surrounding areas are essential conservation elements for protecting the entire ecological landscape of preservation areas.

A Pilot Study on Environmental Understanding and Estimation of the Nak-Dong River Basin Using Fuyo-1 OPS Data (Fuyo-1 OPS 자료를 이용한 낙동강 하류지역의 환경계측 시고)

  • Kim, Cheon
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.2
    • /
    • pp.169-198
    • /
    • 1996
  • The objectives of this investigation are : 1. To analyze spectral signature and the associated vegetation index for geometric illumination conditions inf1uenced by low solar elevation and high slope orientations in mountainous forest. 2. To assess the accuracy of the spectral angle mapper classification for the a winter land cover in comparison with the maximum likelihood classification. 3. To produce the image of water quality and water properties that could be used to estimate the water pollution sources and the tide-included by turbid water in estuarine and coastal areas. These objectives are to characterize environmental and ecological monitoring applications of the Nak-Dong River Basin by using Fuyo-1 OPS VNIR data acquired on December 26, 1992. The results of this paper are as follows : 1. The spectral digital numbers and vegetation indexes (NDVI and TVI) of mountainous forest are higher on the slope facing the sun than on the slope hidden the sun under low sun elevation condition. 2. The spectral angle mapper algorithm produces a more accurate land cover classification of areas with steep slope, various aspects and low solar elevation than the maximum likelihood classifier. 3. The maximum likelihood classification images can be used for identifying the location and movement of both freshwater and salt water, regardless of geometric illumination conditions. 4. The color-coded density sliced image of selected water bodies by using the near-infrared band 3 can provide distribution of the water quality of the Lower Nak-Dong River. 5. The color-coded normalized difference vegetation index image of the selected mountain forest is suitable to classify winter vegetation cover types, i.e., forest canopy densities for slope orientations.

A Comparison of the Land Cover Data Sets over Asian Region: USGS, IGBP, and UMd (아시아 지역 지면피복자료 비교 연구: USGS, IGBP, 그리고 UMd)

  • Kang, Jeon-Ho;Suh, Myoung-Seok;Kwak, Chong-Heum
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.159-169
    • /
    • 2007
  • A comparison of the three land cover data sets (United States Geological Survey: USGS, International Geosphere Biosphere Programme: IGBP, and University of Maryland: UMd), derived from 1992-1993 Advanced Very High Resolution Radiometer(AVHRR) data sets, was performed over the Asian continent. Preprocesses such as the unification of map projection and land cover definition, were applied for the comparison of the three different land cover data sets. Overall, the agreement among the three land cover data sets was relatively high for the land covers which have a distinct phenology, such as urban, open shrubland, mixed forest, and bare ground (>45%). The ratios of triple agreement (TA), couple agreement (CA) and total disagreement (TD) among the three land cover data sets are 30.99%, 57.89% and 8.91%, respectively. The agreement ratio between USGS and IGBP is much greater (about 80%) than that (about 32%) between USGS and UMd (or IGBP and UMd). The main reasons for the relatively low agreement among the three land cover data sets are differences in 1) the number of land cover categories, 2) the basic input data sets used for the classification, 3) classification (or clustering) methodologies, and 4) level of preprocessing. The number of categories for the USGS, IGBP and UMd are 24, 17 and 14, respectively. USGS and IGBP used only the 12 monthly normalized difference vegetation index (NDVI), whereas UMd used the 12 monthly NDVI and other 29 auxiliary data derived from AVHRR 5 channels. USGS and IGBP used unsupervised clustering method, whereas UMd used the supervised technique, decision tree using the ground truth data derived from the high resolution Landsat data. The insufficient preprocessing in USGS and IGBP compared to the UMd resulted in the spatial discontinuity and misclassification.