• Title/Summary/Keyword: Vegetated Porous Pavement

Search Result 3, Processing Time 0.016 seconds

Practical Use of Vegetated Porous Pavement for the Construction of Grass Parking Lot (잔디주차장 시공을 위한 잔디블록 활용방안)

  • Han, Seung-Ho;Kang, Jin-Hyoung;Choi, Joon-Soo;Yang, Geun-Mo;Yoon, Yong-Han;Ku, Tae-Ik;Kim, Won-Tae
    • Journal of Environmental Science International
    • /
    • v.18 no.9
    • /
    • pp.1011-1015
    • /
    • 2009
  • The vegetated porous pavement can be installed as an alternative way to replace the traditional pavement, which contributes less to the water circulation system in the urban area. This study aims to an investigation based on the shadow and pressure of the vehicle system, where the turfgrass get grown and the green block get constructed on the grassy parking lot. This study might achieve these conclusions, in the case of use 'green block' makes grass parking lot, plant a kind of 'zenith' and takes sod thickness 40 mm are more efficient for turfgrass growth in the early times. In the case of parking over 8 hours in a day, after 5 weeks turfgrass growth would come into reduce. So over 4 hours parking and after 9 weeks, we need consider to setting up green block in grassy parking lot. The grassy ground would get pressured by the vehicles' load and it would bring into some damage due to the load after 3 weeks. So we should put the grass's growth root point under the designed a top of 'green block' level. When the vehicle amounts and parking density is in a low level, it could be an environmentally friendly product.

Volume of Water Storage and Evapotranspiration by Inserted Materials at a Reservoir of Porous Grass Block (저수형 잔디블록 저수조 내 충진재료에 따른 저수량 및 초종별 증발산량)

  • Han, Seung-Ho;Choi, Joon-Soo;Yang, Geun-Mo;Yang, Byoung-E;Kang, Jin-Hyoung;Kim, Won-Tae
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.5 s.118
    • /
    • pp.76-83
    • /
    • 2006
  • The purpose of this study was to investigate the performance of porous grass block. For the investigation, Festuca arundinacea and Zoysia japonica 'Zenith' were planted, and the volume of evapotranspiration and remains were examined based on different materials in the water tank in the experiment of Festuca arundinacea, the volume of water storage of treatment with perlite ($10.84{\iota}/m^2$) was higher than that with drainage ($7l/m^2$). The difference between the two was $3.84/m^2$. The drainage treatment without water storage capacity showed the higher degree of dryness in turf grass. The volume of evapo-transpiration of treatment with perlite was the highest (21.57mm/week). The volume of evapotranspiration of treatment with sand was 19.57mm/week, and with treatment with drainage was 18.24mm/week. Based on the measured volume of daily evapotranspiration of $2.60{\sim}3.08mm\;d^{-1}$, it was determined that the unit with water storage capacity would store water of one to two days usage compared to unite without such storage capacity. In the experiment of Zoysia japonica 'Zenith', the volume of water storage of treatment with perlite was $10.77l/m^2$ which was similar to the former experiment. The volume of evapotranspiration of treatment with perlite and sand were 21.64mm/week and 20.64mm/week, respectively. In case of airtight water tank, the volume was measured as 22.06mm/week. Each treatment has no notable difference in the volume of evapotranspiration. In conclusion, from the investigation in this study, porous grass block with water tank was found to be effective in plant growth under low irrigation. As the ecological area ratio and vegetated porous pavement have became more emphasized, additional study of rain infiltration and reservoir effect are needed in the future.

Water Balance Estimate of LID Technique for Circulating Urban Design (순환형 도시계획에 따른 LID기술의 물수지 분석)

  • Kang, Sung-Hee;Heo, Woo-Myung;Kang, Sang-Hyeok
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.1065-1073
    • /
    • 2015
  • Urbanization can be significantly affected the hydrologic cycle by increasing flood discharge and heat flux. In order to mitigate these modifications in urban areas, Low Impact Development (LID) technique has been designed and applied in Korea. In order to estimate runoff reduction rate using SWMM LID model, the characteristics of five LID techniques was firstly analyzed for water balance. Vegetated swale and green roof were not reduce flood discharge nor infiltration amount. On the other hand, porous pavement and infiltration trench were captured by infiltration function. The flood reduction rate with LID is substantially affected by their structures and properties, e.g., the percentage of the area installed with LID components and the percentage of the drainage area of the LID components.