• 제목/요약/키워드: Vector space model

검색결과 367건 처리시간 0.026초

선택적 자질 차원 축소를 이용한 최적의 지도적 LSA 방법 (Optimal supervised LSA method using selective feature dimension reduction)

  • 김정호;김명규;차명훈;인주호;채수환
    • 감성과학
    • /
    • 제13권1호
    • /
    • pp.47-60
    • /
    • 2010
  • 기존 웹 페이지 자동분류 연구는 일반적으로 학습 기반인 kNN(k-Nearest Neighbor), SVM(Support Vector Machine)과 통계 기반인 Bayesian classifier, NNA(Neural Network Algorithm)등 여러 종류의 분류작업에서 입증된 분류 기법을 사용하여 웹 페이지를 분류하였다. 하지만 인터넷 상의 방대한 양의 웹 페이지와 각 페이지로부터 나오는 많은 양의 자질들을 처리하기에는 공간적, 시간적 문제에 직면하게 된다. 그리고 분류 대상을 표현하기 위해 흔히 사용하는 단일(uni-gram) 자질 기반에서는 자질들 간의 관계 분석을 통해 자질에 정확한 의미를 부여하기 힘들다. 특히 본 논문의 분류 대상인 한글 웹 페이지의 자질인 한글 단어는 중의적인 의미를 가지는 경우가 많기 때문에 이러한 중의성이 분류 작업에 많은 영향을 미칠 수 있다. 잠재적 의미 분석 LSA(Latent Semantic Analysis) 분류기법은 선형 기법인 특이치 분해 SVD(Singular Value Decomposition)을 통해 행렬의 분해 및 차원 축소(dimension reduction)를 수행하여 대용량 데이터 집합의 분류를 효율적으로 수행하고, 또한 차원 축소를 통해 새로운 의미공간을 생성하여 자질들의 중의적 의미를 분석할 수 있으며 이 새로운 의미공간상에 분류 대상을 표현함으로써 분류 대상의 잠재적 의미를 분석할 수 있다. 하지만 LSA의 차원 축소는 전체 데이터의 표현 정도만을 고려할 뿐 분류하고자 하는 범주를 고려하지 않으며 또한 서로 다른 범주 간의 차별성을 고려하지 않기 때문에 축소된 차원 상에서 분류 시 서로 다른 범주 데이터간의 모호한 경계로 인해 안정된 분류 성능을 나타내지 못한다. 이에 본 논문은 새로운 의미공간(semantic space) 상에서 서로 다른 범주사이의 명확한 구분을 위한 특별한 차원 선택을 수행하여 최적의 차원 선택과 안정된 분류성능을 보이는 최적의 지도적 LSA을 소개한다. 제안한 지도적 LSA 방법은 기본 LSA 및 다른 지도적 LSA 방법들에 비해 저 차원 상에서 안정되고 더 높은 성능을 보였다. 또한 추가로 자질 생성 및 선택 시 불용어의 제거와 자질에 대한 가중치를 통계적인 학습을 통해 얻음으로써 더 높은 학습효과를 유도하였다.

  • PDF

스트림 데이타 예측을 위한 슬라이딩 윈도우 기반 점진적 회귀분석 (Incremental Regression based on a Sliding Window for Stream Data Prediction)

  • 김성현;김룡;류근호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제34권6호
    • /
    • pp.483-492
    • /
    • 2007
  • 최근 센서 네트워크의 발달로 실세계의 많은 데이타가 시간 속성을 갖고 실시간으로 수집되고 있다. 기존의 시계열 데이타 예측 기법은 모델 갱신 없이 예측을 수행하였다. 그러나 스트림 데이타는 매우 빠르게 수집이 되고 시간이 지남에 따라 데이타의 특성이 변경될 수 있으므로 기존의 시계열 예측 기법을 적용하는 것은 적절하지 않다. 따라서 이 논문에서는 슬라이딩 윈도우와 점진적인 회귀분석을 이용한 스트림 데이타 예측 기법을 제안한다. 이 기법은 스트림 데이타를 다중 회귀 모델에 입력하기 위해 차원 분열을 통해 여러 개의 속성으로 분열(Fractal)하고, 변화되는 데이타의 분포를 반영하기 위해 슬라이딩 윈도우 기법을 사용하여 점진적으로 회귀 모델을 갱신한다. 또한 고정 크기 큐를 이용하여 최근의 데이타로만 모델을 유지한다. 이전 데이타의 유지 없이 최소 정보를 갖는 행렬을 통해 모델을 갱신하므로 낮은 공간 복잡도를 갖고 점진적으로 모델을 갱신함으로써 에러율의 증가를 방지한다. 제안된 기법의 타당성은 RME(Relative Mean Error)와 RMSE(Root Mean Square Error)를 이용하여 측정하였고, 실험 결과 다른 기법에 비해 우수하였다.

한국표준산업분류를 기준으로 한 문서의 자동 분류 모델에 관한 연구 (A Study on Automatic Classification Model of Documents Based on Korean Standard Industrial Classification)

  • 이재성;전승표;유형선
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.221-241
    • /
    • 2018
  • 지식사회에 들어서며 새로운 형태의 자본으로서 정보의 중요성이 강조되고 있다. 그리고 기하급수적으로 생산되는 디지털 정보의 효율적 관리를 위해 정보 분류의 중요성도 증가하고 있다. 본 연구에서는 기업의 기술사업화 의사결정에 도움이 될 수 있는 맞춤형 정보를 자동으로 분류하여 제공하기 위하여, 기업의 사업 성격을 나타내는 한국표준산업분류(이하 'KSIC')를 기준으로 정보를 분류하는 방법을 제안하였다. 정보 혹은 문서의 분류 방법은 대체로 기계학습을 기반으로 연구되어 왔으나 KSIC를 기준으로 분류된 충분한 학습데이터가 없어, 본 연구에서는 문서간 유사도를 계산하는 방식을 적용하였다. 구체적으로 KSIC 각 코드별 설명문을 수집하고 벡터 공간 모델을 이용하여 분류 대상 문서와의 유사도를 계산하여 가장 적합한 KSIC 코드를 제시하는 방법과 모델을 제시하였다. 그리고 IPC 데이터를 수집한 후 KSIC를 기준으로 분류하고, 이를 특허청에서 제공하는 KSIC-IPC 연계표와 비교함으로써 본 방법론을 검증하였다. 검증 결과 TF-IDF 계산식의 일종인 LT 방식을 적용하였을 때 가장 높은 일치도를 보였는데, IPC 설명문에 대해 1순위 매칭 KSIC의 일치도는 53%, 5순위까지의 누적 일치도는 76%를 보였다. 이를 통해 보다 정량적이고 객관적으로 중소기업이 필요로 할 기술, 산업, 시장정보에 대한 KSIC 분류 작업이 가능하다는 점을 확인할 수 있었다. 또한 이종 분류체계 간 연계표를 작성함에 있어서도 본 연구에서 제공하는 방법과 결과물이 전문가의 정성적 판단에 도움이 될 기초 자료로 활용될 수 있을 것으로 판단된다.

Word2Vec을 활용한 제품군별 시장규모 추정 방법에 관한 연구 (A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm)

  • 정예림;김지희;유형선
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.1-21
    • /
    • 2020
  • 인공지능 기술의 급속한 발전과 함께 빅데이터의 상당 부분을 차지하는 비정형 텍스트 데이터로부터 의미있는 정보를 추출하기 위한 다양한 연구들이 활발히 진행되고 있다. 비즈니스 인텔리전스 분야에서도 새로운 시장기회를 발굴하거나 기술사업화 주체의 합리적 의사결정을 돕기 위한 많은 연구들이 이뤄져 왔다. 본 연구에서는 기업의 성공적인 사업 추진을 위해 핵심적인 정보 중의 하나인 시장규모 정보를 도출함에 있어 기존에 제공되던 범위보다 세부적인 수준의 제품군별 시장규모 추정이 가능하고 자동화된 방법론을 제안하고자 한다. 이를 위해 신경망 기반의 시멘틱 단어 임베딩 모델인 Word2Vec 알고리즘을 적용하여 개별 기업의 생산제품에 대한 텍스트 데이터를 벡터 공간으로 임베딩하고, 제품명 간 코사인 거리(유사도)를 계산함으로써 특정한 제품명과 유사한 제품들을 추출한 뒤, 이들의 매출액 정보를 연산하여 자동으로 해당 제품군의 시장규모를 산출하는 알고리즘을 구현하였다. 실험 데이터로서 통계청의 경제총조사 마이크로데이터(약 34만 5천 건)를 이용하여 제품명 텍스트 데이터를 벡터화 하고, 한국표준산업분류 해설서의 산업분류 색인어를 기준으로 활용하여 코사인 거리 기반으로 유사한 제품명을 추출하였다. 이후 개별 기업의 제품 데이터에 연결된 매출액 정보를 기초로 추출된 제품들의 매출액을 합산함으로써 11,654개의 상세한 제품군별 시장규모를 추정하였다. 성능 검증을 위해 실제 집계된 통계청의 품목별 시장규모 수치와 비교한 결과 피어슨 상관계수가 0.513 수준으로 나타났다. 본 연구에서 제시한 모형은 의미 기반 임베딩 모델의 정확성 향상 및 제품군 추출 방식의 개선이 필요하나, 표본조사 또는 다수의 가정을 기반으로 하는 전통적인 시장규모 추정 방법의 한계를 뛰어넘어 텍스트 마이닝 및 기계학습 기법을 최초로 적용하여 시장규모 추정 방식을 지능화하였다는 점, 시장규모 산출범위를 사용 목적에 따라 쉽고 빠르게 조절할 수 있다는 점, 이를 통해 다양한 분야에서 수요가 높은 세부적인 제품군별 시장정보 도출이 가능하여 실무적인 활용성이 높다는 점에서 의의가 있다.

모바일 인터넷 서비스를 위한 정보시스템 지속성에 대한 이성과 감성의 조화 모델 (A Balanced Cognition-Affect Model of Information Systems Continuance for Mobile Internet Service)

  • 김기은;김희웅
    • 감성과학
    • /
    • 제11권4호
    • /
    • pp.461-480
    • /
    • 2008
  • 기술의 도입과 이용지속성에 관한 많은 연구가 있어왔지만, 대부분 인지적 관점에서 바라본 데 반해, 감성적 측면은 상대적으로 부족하다. 정보시스템 연구에서 사용자의 태도, 만족이 주로 고려된다 하더라도 그것들은 감성의 오로지 일부분일뿐이다. 여러 학계의 연구자들은 인간행동을 이해하고 예측하는데 감성의 중요성을 주목하기 시작했다. 특히, 모바일 인터넷과 같은 현대 응용기술에서는 기술의 이용자로서뿐 아니라 서비스 소비자로서의 역할을 하는 사용자들의 감성이 필수적으로 연구되어야한다. 그래서, 이연구는 정보시스템 지속성을 위한 이성과 감성의 조화모델을 제안한다. 이전 연구들과의 차이점은 Circumplex Model of Affect에 따르는 감성의 주요한 차원인 즐거움과 각성(Pleasure and Arousal)을 고려함으로써, 다른 모든 감성의 요인들이 이 두 축의 조합으로 설명될수있도록 한 점이다. 그래서, 사용자 행동에 관한 이전연구들이 즐김과 흥분과 같은 "감성에 연관된 구조"의 직,간접적 효과를 고려한데 반해, 이 연구는 즐거움과 각성과 같은 "감성에 기반한 구조"의 직접적 효과를 제시한다. 본 연구에서 제안된 이성과 감성의 조화모델은 모바일 인터넷 서비스 사용자들을 대상으로 테스트되고, 그 타당성이 입증된다.

  • PDF

문장 분류를 위한 정보 이득 및 유사도에 따른 단어 제거와 선택적 단어 임베딩 방안 (Selective Word Embedding for Sentence Classification by Considering Information Gain and Word Similarity)

  • 이민석;양석우;이홍주
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.105-122
    • /
    • 2019
  • 텍스트 데이터가 특정 범주에 속하는지 판별하는 문장 분류에서, 문장의 특징을 어떻게 표현하고 어떤 특징을 선택할 것인가는 분류기의 성능에 많은 영향을 미친다. 특징 선택의 목적은 차원을 축소하여도 데이터를 잘 설명할 수 있는 방안을 찾아내는 것이다. 다양한 방법이 제시되어 왔으며 Fisher Score나 정보 이득(Information Gain) 알고리즘 등을 통해 특징을 선택 하거나 문맥의 의미와 통사론적 정보를 가지는 Word2Vec 모델로 학습된 단어들을 벡터로 표현하여 차원을 축소하는 방안이 활발하게 연구되었다. 사전에 정의된 단어의 긍정 및 부정 점수에 따라 단어의 임베딩을 수정하는 방법 또한 시도하였다. 본 연구는 문장 분류 문제에 대해 선택적 단어 제거를 수행하고 임베딩을 적용하여 문장 분류 정확도를 향상시키는 방안을 제안한다. 텍스트 데이터에서 정보 이득 값이 낮은 단어들을 제거하고 단어 임베딩을 적용하는 방식과, 정보이득 값이 낮은 단어와 코사인 유사도가 높은 주변 단어를 추가로 선택하여 텍스트 데이터에서 제거하고 단어 임베딩을 재구성하는 방식이다. 본 연구에서 제안하는 방안을 수행함에 있어 데이터는 Amazon.com의 'Kindle' 제품에 대한 고객리뷰, IMDB의 영화리뷰, Yelp의 사용자 리뷰를 사용하였다. Amazon.com의 리뷰 데이터는 유용한 득표수가 5개 이상을 만족하고, 전체 득표 중 유용한 득표의 비율이 70% 이상인 리뷰에 대해 유용한 리뷰라고 판단하였다. Yelp의 경우는 유용한 득표수가 5개 이상인 리뷰 약 75만개 중 10만개를 무작위 추출하였다. 학습에 사용한 딥러닝 모델은 CNN, Attention-Based Bidirectional LSTM을 사용하였고, 단어 임베딩은 Word2Vec과 GloVe를 사용하였다. 단어 제거를 수행하지 않고 Word2Vec 및 GloVe 임베딩을 적용한 경우와 본 연구에서 제안하는 선택적으로 단어 제거를 수행하고 Word2Vec 임베딩을 적용한 경우를 비교하여 통계적 유의성을 검정하였다.

PAT 기반 온도장 보간을 이용한 관측위성의 열지향오차해석 (Thermal pointing error analysis of the observation satellites with interpolated temperature based on PAT method)

  • 임재혁;김선원;김정훈;김창호;전형열;오현철;신창민;이병채
    • 한국항공우주학회지
    • /
    • 제44권1호
    • /
    • pp.80-87
    • /
    • 2016
  • 본 논문에서는 계절 및 주야의 온도변화를 고려한 관측위성의 열지향오차해석을 실시한다. 관측위성은 임무수행기간 동안 다채널의 관측센서를 이용해서 지구표면의 영상을 촬영한다. 그러나 주야 및 계절별로 최대 200도의 온도환경 차이가 발생하며 이로 인해 관측센서 및 별추적기의 시선벡터가 변화되고 정해진 목표지점의 영상촬영이 어렵다. 이런 문제를 사전예측하고 대응하기 위해서 열지향오차해석을 실시한다. 우선 궤도열환경해석으로부터 도출된 성긴 온도장 정보를 상세한 구조유한요소모델에 PAT기법을 이용해 보간하여 온도변화에 따른 열변형해석을 수행하였다. PAT로 보간된 온도분포의 정확도를 검증하였으며, 열변형해석결과로부터 열지향오차를 도출하였다.

다중요인모델에 기반한 텍스트 문서에서의 토픽 추출 및 의미 커널 구축 (Multiple Cause Model-based Topic Extraction and Semantic Kernel Construction from Text Documents)

  • 장정호;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권5호
    • /
    • pp.595-604
    • /
    • 2004
  • 문서 집합 내의 개념 또는 의미 관계의 자동 분석은 보다 효율적인 정보 획득과 단어 이상의 개념 수준에서의 문서간 비교를 가능케 한다. 본 논문에서는 다중요인모델에 기반 하여 텍스트 문서로부터 토픽들을 추출하고 이로부터 의미 커널(semantic kernel)을 구축하여 문서간 유사도를 측정하는 방안을 제시한다. 텍스트 문서는 내재된 토픽들의 다양한 결합에 의해 생성된다고 가정하며 하나의 토픽은 공통 주제에 관련되거나 적어도 자주 같이 나타나는 단어들의 집합으로 정의한다. 다중요인모델은 은닉층을 갖는 하나의 네트워크 형태로 표현되며, 토픽을 표현하는 단어 집합은 은닉노드로부터의 가중치가 높은 단어들로 구성된다. 일반적으로 이러한 다중요인 네트워크에서의 학습과 추론과정을 용이하게 하기 위해서는 근사적 확률 추정 기법이 요구되는데, 본 논문에서는 헬름홀츠 머신에 의한 방법을 활용한다. TDT-2 문서 집합에 대한 실험에서 토픽별로 관련 있는 단어 집합들을 추출할 수 있었으며, 4개의 텍스트 집합에 대한문서 검색 실험에서는 다중요인모델의 분석결과에 기반 한 의미 커널을 사용함으로써 기본 벡터공간 모델에 비해 평균정확도 면에서 통계적으로 유의한 수준의 성능 향상을 얻을 수 있었다.

지상라이다를 이용한 지하철 역사의 3D 실내공간정보 구축방안 연구 (A Study on the Construction of Indoor Spatial Information using a Terrestrial LiDAR)

  • 고종식;정인훈;신한섭;최윤수;조성길
    • Spatial Information Research
    • /
    • 제21권3호
    • /
    • pp.89-101
    • /
    • 2013
  • 최근 공간정보 서비스 대상 영역의 범위가 실외 공간에서 실내 공간으로 급속하게 확대되어 가고 있으며, 이러한 변화는 IT 모바일 등 첨단기술의 발달과 함께 다양한 분야와의 융 복합을 통한 연계 활용으로 향후 실내공간정보의 다양한 서비스 수요를 창출하게 될 것으로 판단된다. 따라서 본 연구에서는 현재 활용 가능한 실내공간정보 구축방법에 대해 살펴본 후, 서울 시청 지하철 역사를 대상으로 실내 고정밀 레이저 측량 및 3차원 벡터 가공기술을 활용하여 정밀 3차원 실내공간정보를 구축하였다. 구축된 정밀 3차원 실내모델은 1:1000 수치지도와의 중첩분석을 통해 정확도 평가를 실시하였으며 그 결과, X축으로 최대 0.04m Y축으로 최대 0.06m 이내의 위치정확도를 확보할 수 있는 것을 확인할 수 있었다. 이러한 결과는 향후 실내공간정보 구축 및 실내외 공간정보 연계활용을 위한 기초자료로 활용될 수 있을 것이다.

전통문화 이미지를 위한 세부 자질 주목형 이미지 자동 분석기 (Detail Focused Image Classifier Model for Traditional Images)

  • 김규경;허윤아;김경민;유원희;임희석
    • 한국융합학회논문지
    • /
    • 제8권12호
    • /
    • pp.85-92
    • /
    • 2017
  • 이 논문에서는 최근 전통문화의 늘어나는 콘텐츠와 대조적으로 전통문화에 대한 접근성이 떨어지는 점에 주목하여 이러한 콘텐츠의 접근성의 향상을 위해 지속된 관리와 연구를 위하여 전통문화 이미지를 위한 이미지 자동 분석기를 소개한다. 이 논문에서 소개하는 이미지 자동 분석기는 인공신경망을 기반으로 입력 이미지의 자질들을 벡터스페이스로 변환하여 이를 RNN 기반의 모델을 통하여 세부 자질들을 파악하여 전통문화 이미지의 분류를 행한다. 이러한 방법을 통하여 전체적으로 비슷하게 보이는 전통문화 이미지들의 분류를 가능케 한다. 해당 모델의 훈련을 위하여 한민족정보문화마당 기반의 형식을 토대로 넓은 폭의 이미지 데이터를 수집 및 정리하여 차후 전통문화 이미지 관련 분야에서 사용할 수 있는 데이터셋의 구축에 기여를 하였다. 또한 이러한 연구가 최종적으로 전통문화와 관련된 수요, 공급 및 연구가 한층 더 활발해지는 것에 기여를 한다.