• Title/Summary/Keyword: Vector space model

Search Result 363, Processing Time 0.026 seconds

WebPR : A Dynamic Web Page Recommendation Algorithm Based on Mining Frequent Traversal Patterns (WebPR :빈발 순회패턴 탐사에 기반한 동적 웹페이지 추천 알고리즘)

  • Yoon, Sun-Hee;Kim, Sam-Keun;Lee, Chang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.187-198
    • /
    • 2004
  • The World-Wide Web is the largest distributed Information space and has grown to encompass diverse information resources. However, although Web is growing exponentially, the individual's capacity to read and digest contents is essentially fixed. From the view point of Web users, they can be confused by explosion of Web information, by constantly changing Web environments, and by lack of understanding needs of Web users. In these Web environments, mining traversal patterns is an important problem in Web mining with a host of application domains including system design and Information services. Conventional traversal pattern mining systems use the inter-pages association in sessions with only a very restricted mechanism (based on vector or matrix) for generating frequent k-Pagesets. We develop a family of novel algorithms (termed WebPR - Web Page Recommend) for mining frequent traversal patterns and then pageset to recommend. Our algorithms provide Web users with new page views, which Include pagesets to recommend, so that users can effectively traverse its Web site. The main distinguishing factors are both a point consistently spanning schemes applying inter-pages association for mining frequent traversal patterns and a point proposing the most efficient tree model. Our experimentation with two real data sets, including Lady Asiana and KBS media server site, clearly validates that our method outperforms conventional methods.

Extracting Typical Group Preferences through User-Item Optimization and User Profiles in Collaborative Filtering System (사용자-상품 행렬의 최적화와 협력적 사용자 프로파일을 이용한 그룹의 대표 선호도 추출)

  • Ko Su-Jeong
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.7
    • /
    • pp.581-591
    • /
    • 2005
  • Collaborative filtering systems have problems involving sparsity and the provision of recommendations by making correlations between only two users' preferences. These systems recommend items based only on the preferences without taking in to account the contents of the items. As a result, the accuracy of recommendations depends on the data from user-rated items. When users rate items, it can be expected that not all users ran do so earnestly. This brings down the accuracy of recommendations. This paper proposes a collaborative recommendation method for extracting typical group preferences using user-item matrix optimization and user profiles in collaborative tittering systems. The method excludes unproven users by using entropy based on data from user-rated items and groups users into clusters after generating user profiles, and then extracts typical group preferences. The proposed method generates collaborative user profiles by using association word mining to reflect contents as well as preferences of items and groups users into clusters based on the profiles by using the vector space model and the K-means algorithm. To compensate for the shortcoming of providing recommendations using correlations between only two user preferences, the proposed method extracts typical preferences of groups using the entropy theory The typical preferences are extracted by combining user entropies with item preferences. The recommender system using typical group preferences solves the problem caused by recommendations based on preferences rated incorrectly by users and reduces time for retrieving the most similar users in groups.

Visualization and Localization of Fusion Image Using VRML for Three-dimensional Modeling of Epileptic Seizure Focus (VRML을 이용한 융합 영상에서 간질환자 발작 진원지의 3차원적 가시화와 위치 측정 구현)

  • 이상호;김동현;유선국;정해조;윤미진;손혜경;강원석;이종두;김희중
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.34-42
    • /
    • 2003
  • In medical imaging, three-dimensional (3D) display using Virtual Reality Modeling Language (VRML) as a portable file format can give intuitive information more efficiently on the World Wide Web (WWW). The web-based 3D visualization of functional images combined with anatomical images has not studied much in systematic ways. The goal of this study was to achieve a simultaneous observation of 3D anatomic and functional models with planar images on the WWW, providing their locational information in 3D space with a measuring implement using VRML. MRI and ictal-interictal SPECT images were obtained from one epileptic patient. Subtraction ictal SPECT co-registered to MRI (SISCOM) was performed to improve identification of a seizure focus. SISCOM image volumes were held by thresholds above one standard deviation (1-SD) and two standard deviations (2-SD). SISCOM foci and boundaries of gray matter, white matter, and cerebrospinal fluid (CSF) in the MRI volume were segmented and rendered to VRML polygonal surfaces by marching cube algorithm. Line profiles of x and y-axis that represent real lengths on an image were acquired and their maximum lengths were the same as 211.67 mm. The real size vs. the rendered VRML surface size was approximately the ratio of 1 to 605.9. A VRML measuring tool was made and merged with previous VRML surfaces. User interface tools were embedded with Java Script routines to display MRI planar images as cross sections of 3D surface models and to set transparencies of 3D surface models. When transparencies of 3D surface models were properly controlled, a fused display of the brain geometry with 3D distributions of focal activated regions provided intuitively spatial correlations among three 3D surface models. The epileptic seizure focus was in the right temporal lobe of the brain. The real position of the seizure focus could be verified by the VRML measuring tool and the anatomy corresponding to the seizure focus could be confirmed by MRI planar images crossing 3D surface models. The VRML application developed in this study may have several advantages. Firstly, 3D fused display and control of anatomic and functional image were achieved on the m. Secondly, the vector analysis of a 3D surface model was defined by the VRML measuring tool based on the real size. Finally, the anatomy corresponding to the seizure focus was intuitively detected by correlations with MRI images. Our web based visualization of 3-D fusion image and its localization will be a help to online research and education in diagnostic radiology, therapeutic radiology, and surgery applications.

  • PDF