• Title/Summary/Keyword: Vector sensor

Search Result 534, Processing Time 0.033 seconds

On-line sensor calibration for mobile robot (이동 로봇을 위한 온라인 센서 교정 방법)

  • 김성도;유원필;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.527-530
    • /
    • 1996
  • The Kalman filter has been used as a self-localization method for the mobile robot. To satisfy the assumptions inherent in the Kalman filter, we should calibrate the sensors of the robot before use of them. However, it is generally hard to find exact sensor parameters, and the parameters may change during the robot task as the environment varies. Thus we need to perform on-line sensor calibration, by which we can obtain more credible location of the mobile robot. In this paper, we present an on-line sensor calibration scheme which estimates the unknown sensor bias and the current position of the robot. To this end, first we find out the calibration errors of the sensor from redundant sensory data using the parity vector and recursive minimum variance estimation. Then we calculate the current position of the robot by weighted least square estimation without internal encoder data. The performance of the proposed method is evaluated through computer simulation.

  • PDF

Influence of Sensor Noise on the Localization Error in Multichannel SQUID Gradiometer System (다채널 스퀴드 미분계에서 센서 잡음이 위치추정 오차에 미치는 영향)

  • 김기웅;이용호;권혁찬;김진목;정용석;강찬석;김인선;박용기;이순걸
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.98-104
    • /
    • 2004
  • We analyzed a noise-sensitivity profile of a specific SQUID sensor system for the localization of brain activity. The location of a neuromagnetic current source is estimated from the recording of spatially distributed SQUID sensors. According to the specific arrangement of the sensors, each site in the source space has different sensitivity, that is, the difference in the lead field vectors. Conversely, channel noises on each sensor will give a different amount of the estimation error to each of the source sites. e.g., a distant source site from the sensor system has a small lead-field vector in magnitude and low sensitivity. However, when we solve the inverse problem from the recorded sensor data, we use the inverse of the lead-field vector that is rather large, which results in an overestimated noise power on the site. Especially, the spatial sensitivity profile of a gradiometer system measuring tangential fields is much more complex than a radial magnetometer system. This is one of the causes to make the solutions of inverse problems unstable on intervening of the sensor noise. In this study, in order to improve the localization accuracy, we calculated the noise-sensitivity profile of our 40-channel planar SQUID gradiometer system, and applied it as a normalization weight factor to the source localization using synthetic aperture magnetometry.

  • PDF

Unsupervised Image Classification through Multisensor Fusion using Fuzzy Class Vector (퍼지 클래스 벡터를 이용하는 다중센서 융합에 의한 무감독 영상분류)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.4
    • /
    • pp.329-339
    • /
    • 2003
  • In this study, an approach of image fusion in decision level has been proposed for unsupervised image classification using the images acquired from multiple sensors with different characteristics. The proposed method applies separately for each sensor the unsupervised image classification scheme based on spatial region growing segmentation, which makes use of hierarchical clustering, and computes iteratively the maximum likelihood estimates of fuzzy class vectors for the segmented regions by EM(expected maximization) algorithm. The fuzzy class vector is considered as an indicator vector whose elements represent the probabilities that the region belongs to the classes existed. Then, it combines the classification results of each sensor using the fuzzy class vectors. This approach does not require such a high precision in spatial coregistration between the images of different sensors as the image fusion scheme of pixel level does. In this study, the proposed method has been applied to multispectral SPOT and AIRSAR data observed over north-eastern area of Jeollabuk-do, and the experimental results show that it provides more correct information for the classification than the scheme using an augmented vector technique, which is the most conventional approach of image fusion in pixel level.

Sparsity-constrained Extended Kalman Filter concept for damage localization and identification in mechanical structures

  • Ginsberg, Daniel;Fritzen, Claus-Peter;Loffeld, Otmar
    • Smart Structures and Systems
    • /
    • v.21 no.6
    • /
    • pp.741-749
    • /
    • 2018
  • Structural health monitoring (SHM) systems are necessary to achieve smart predictive maintenance and repair planning as well as they lead to a safe operation of mechanical structures. In the context of vibration-based SHM the measured structural responses are employed to draw conclusions about the structural integrity. This usually leads to a mathematically illposed inverse problem which needs regularization. The restriction of the solution set of this inverse problem by using prior information about the damage properties is advisable to obtain meaningful solutions. Compared to the undamaged state typically only a few local stiffness changes occur while the other areas remain unchanged. This change can be described by a sparse damage parameter vector. Such a sparse vector can be identified by employing $L_1$-regularization techniques. This paper presents a novel framework for damage parameter identification by combining sparse solution techniques with an Extended Kalman Filter. In order to ensure sparsity of the damage parameter vector the measurement equation is expanded by an additional nonlinear $L_1$-minimizing observation. This fictive measurement equation accomplishes stability of the Extended Kalman Filter and leads to a sparse estimation. For verification, a proof-of-concept example on a quadratic aluminum plate is presented.

Fault Diagnosis of Low Speed Bearing Using Support Vector Machine

  • Widodo, Achmad;Son, Jong-Duk;Yang, Bo-Suk;Gu, Dong-Sik;Choi, Byeong-Keun;Kim, Yong-Han;Tan, Andy C.C;Mathew, Joseph
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.891-894
    • /
    • 2007
  • This study presents fault diagnosis of low speed bearing using support vector machine (SVM). The data used in the experiment was acquired using acoustic emission (AE) sensor and accelerometer. The aim of this study is to compare the performance of fault diagnosis based on AE signal and vibration signal with same load and speed. A low speed test rig was developed to simulate various defects with shaft speeds as low as 10 rpm under several loading conditions. In this study, component analysis was also performed to extract the feature and reduce the dimensionality of original data feature. Moreover, the classification for fault diagnosis was also conducted using original data feature without feature extraction. The result shows that extracted feature from AE sensor gave better performance in faults classification.

  • PDF

Permanent Magnet Synchronous Motor Vector Control Using Rectangular 2 Hall Sensors (구형파 2-Hall Sensor를 이용한 영구자석형 동기전동기의 벡터 제어)

  • Won, Chung-Yuen;Kong, Tae-Woong;Lee, Jung-Hyo;Yu, Jae-Sung;Lee, Won-Cheol;Kim, Jae-Hyung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.120-127
    • /
    • 2008
  • This paper proposes a new vector control method using two rectangular hall sensors instead of using the expensive encoder and resolver. The proposed method estimates the speed and motor position by using the quadruple of two hall sensors signals instead of encoder signal. The proposed new speed estimation method is stable under the rated speed range. This algorithm will be able to moderate prices of the whole system and apply to the condition unfitted with encoder and resolver.

Classification of Behavioral Patterns Associated with Sleeping in Residential Space (주거공간에서 수면 전후의 행동유형 분류)

  • Cho, Seung-Ho;Kim, Woo-Yeol;Moon, Bong-Hee
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.477-481
    • /
    • 2010
  • In this paper, we try to classify behavior patterns of a person around a bed based on a wireless sensor network system. We define five behavioral patterns and three states of a person around a bed which is described by a state machine. We collected data sensed by motion detection and vibration sensors installed around a bed from which a feature vector was extracted. Based on feature vector corresponding to behavioral patterns and the state machine, we established a model for behavioral patterns. To validate the model, experiments on subjects were performed and the model was fixed. These experimental results revealed that behavior patterns of a person around a bed can be classified well.

Use of Support Vector Machines for Defect Detection of Metal Bellows Welding (금속 벨로우즈 용접의 결점 탐지를 위한 서포터 벡터 머신의 이용)

  • Park, Min-Chul;Byun, Young-Tae;Kim, Dong-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.1
    • /
    • pp.11-20
    • /
    • 2015
  • Typically welded bellows are checked with human eye and microscope, and then go through leakage test of gas. The proposed system alternates these heuristic techniques using support vector machines. Image procedures in the proposed method can cover the irregularity problem induced from human being. To get easy observation through microscope, 3D display system is also exploited. Experimental results from this automatic measurement show the welding detection is done within one tenth of permitted error range.

Sensor Data Fusion for Navigation of Mobile Robot With Collision Avoidance and Trap Recovery

  • Jeon, Young-Su;Ahn, Byeong-Kyu;Kuc, Tae-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2461-2466
    • /
    • 2003
  • This paper presents a simple sensor fusion algorithm using neural network for navigation of mobile robots with obstacle avoidance and trap recovery. The multiple sensors input sensor data to the input layer of neural network activating the input nodes. The multiple sensors used include optical encoders, ultrasonic sensors, infrared sensors, a magnetic compass sensor, and GPS sensors. The proposed sensor fusion algorithm is combined with the VFH(Vector Field Histogram) algorithm for obstacle avoidance and AGPM(Adaptive Goal Perturbation Method) which sets adaptive virtual goals to escape trap situations. The experiment results show that the proposed low-level fusion algorithm is effective for real-time navigation of mobile robot.

  • PDF

Stator Flux Oriented Sensorless Vector Control with Phase/Gain Compensated LPF for Induction Motor (유도전동기를 위한 위상/이득 보상 LPF를 가지는 고정자 자속 기준 센서리스 벡터 제어)

  • Park Seung-Yub;Kim Sam-Young
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.4
    • /
    • pp.201-207
    • /
    • 2005
  • This paper has investigated the sensorless vector control method of induction motor based on the stator flux oriented voltage equation and the digital low pass filter (LPF) with compensator of phase/gain. The Proposed vector control method is easy to decide the stator reference voltages and control of motor, since it is based on stator flux vector But this method has sensitive structure to excessive sensor noise and PWM pulsating components of stator currents because the measured stator currents are directly used to compensate the internal resistive voltage drop at the determination of stator reference voltages. To eliminate the noise sensitive of proposed vector drive, this paper propose the digital LPF with compensator of phase/gain base on orthogonal property of stator current vector in stationary $\alpha$, $\beta$ reference frame. The proposed methods have been simulated and implemented on a sensorless vector drive for 750W three-phase induction motor. The simulation and experimental results demonstrate effectiveness of the proposed methods.