• Title/Summary/Keyword: Vector potential

Search Result 638, Processing Time 0.025 seconds

Foamy Virus Integrase in Development of Viral Vector for Gene Therapy

  • Kim, Jinsun;Lee, Ga-Eun;Shin, Cha-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1273-1281
    • /
    • 2020
  • Due to the broad host suitability of viral vectors and their high gene delivery capacity, many researchers are focusing on viral vector-mediated gene therapy. Among the retroviruses, foamy viruses have been considered potential gene therapy vectors because of their non-pathogenicity. To date, the prototype foamy virus is the only retrovirus that has a high-resolution structure of intasomes, nucleoprotein complexes formed by integrase, and viral DNA. The integration of viral DNA into the host chromosome is an essential step for viral vector development. This process is mediated by virally encoded integrase, which catalyzes unique chemical reactions. Additionally, recent studies on foamy virus integrase elucidated the catalytic functions of its three distinct domains and their effect on viral pathogenicity. This review focuses on recent advancements in biochemical, structural, and functional studies of foamy virus integrase for gene therapy vector research.

Landslide risk zoning using support vector machine algorithm

  • Vahed Ghiasi;Nur Irfah Mohd Pauzi;Shahab Karimi;Mahyar Yousefi
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.267-284
    • /
    • 2023
  • Landslides are one of the most dangerous phenomena and natural disasters. Landslides cause many human and financial losses in most parts of the world, especially in mountainous areas. Due to the climatic conditions and topography, people in the northern and western regions of Iran live with the risk of landslides. One of the measures that can effectively reduce the possible risks of landslides and their crisis management is to identify potential areas prone to landslides through multi-criteria modeling approach. This research aims to model landslide potential area in the Oshvand watershed using a support vector machine algorithm. For this purpose, evidence maps of seven effective factors in the occurrence of landslides namely slope, slope direction, height, distance from the fault, the density of waterways, rainfall, and geology, were prepared. The maps were generated and weighted using the continuous fuzzification method and logistic functions, resulting values in zero and one range as weights. The weighted maps were then combined using the support vector machine algorithm. For the training and testing of the machine, 81 slippery ground points and 81 non-sliding points were used. Modeling procedure was done using four linear, polynomial, Gaussian, and sigmoid kernels. The efficiency of each model was compared using the area under the receiver operating characteristic curve; the root means square error, and the correlation coefficient . Finally, the landslide potential model that was obtained using Gaussian's kernel was selected as the best one for susceptibility of landslides in the Oshvand watershed.

Construction and Characterization of a Recombinant Bioluminescence Streptomycetes for Potential Environmental Monitoring

  • Park, Hyun-Joo;Hwang, Keum-Ok;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.706-709
    • /
    • 2002
  • Bacterial bioluminescence has been known to be a highly valuable reporter system for its potential application as an effective and simple environmental monitoring method for toxic compounds. In this short report, we constructed a streptomycetes-Escherichia coli shuttle vector-containing bioluminescence system and evaluated its potential application for toxic compounds monitoring. The luxAB biolurninescence genes from Vibrio harveyi were cloned into a streptornycetes-E. coli shuttle vector (named pESK004) and functionally expressed in Streptomyces lividans. The recombinant S. lividans containing pESK004 exhibited an optimal biolurninescence at the optical density ($OD_{600\;nm}$) of 0.4-0.5 and aldehyde concentration of 0.005%. When the recombinant bioluminescence streptomycetes was exposed to a toxic compound such as heavy metals, chlorinated phenols, or pesticides, the bioluminescence was decreased proportionally to the concentration of toxic compound in the assay mixture. The $EC_{50}$ (effective concentration to decrease 50% of the bioluminescence prior to exposure) values in the recombinant biolurninescence streptomycetes for mercury, 2,4-dichlorophenol, and malathion were measured at 2.2 ppm, 144.0 ppm, and 82.4 ppm, respectively. The degree of sensitivity and specificity pattern toward these toxic compounds characterized in this recombinant bioluminescence streptomycetes were unique when compared with previously reported bacterial bioluminescence systems, and this revealed that a recombinant bioluminescence streptomycetes might provide an alternative or complementary system for potential environmental monitoring.

Construction of nervous necrosis virus (NNV) genome-based DNA replicon vectors for the delivery of foreign antigens

  • Jeong In Yang;Ki Hong Kim
    • Journal of fish pathology
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • The advantages of replicon vectors of RNA viruses include a high ability to stimulate innate immunity and exponential amplification of target mRNA leading to high expression of foreign antigens. The present study aimed to construct a DNA-layered nervous necrosis virus (NNV) replicon vector system in which the capsid protein gene was replaced with a foreign antigen gene and to compare the efficiency of foreign antigen expression between the conventional DNA vaccine vector and the present replicon vector. We presented the first report of a nodavirus DNA replicon-based foreign antigen expression system. Instead of a two-vector system, we devised a one-vector system containing both an NNV RNA-dependent RNA polymerase cassette and a foreign antigen-expressing cassette. This single-vector approach circumvents the issue of low foreign protein expression associated with the low co-transfection efficiency of a two-vector system. Cells transfected with a vector harboring hammerhead ribozyme-fused RNA1 and RNA2 (with the capsid gene ORF replaced with VHSV glycoprotein ORF) exhibited significantly higher transcription of the VHSV glycoprotein gene compared to cells transfected with either a vector without hammerhead ribozyme or a conventional DNA vaccine vector expressing the VHSV glycoprotein. Furthermore, the transcription level of the VHSV glycoprotein in cells transfected with a vector harboring hammerhead ribozyme-fused RNA1 and RNA2 showed a significant increase over time. These results suggest that NNV genome-based DNA replicon vectors have the potential to induce stronger and longer expression of target antigens compared to conventional DNA vaccine vectors.

Navigation Technique of Unmanned Vehicle Using Potential Field Method (포텐셜 필드 기법을 이용한 무인차량의 자율항법 개발)

  • Lee, Sang-Won;Moon, Young-Geun;Kim, Sung-Hyun;Lee, Min-Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.8-15
    • /
    • 2011
  • This paper proposes a real-time navigation algorithm which integrates the artificial potential field (APF) for an unmanned vehicle in the unknown environment. This approach uses repulsive potential function around the obstacles to force the vehicle away and an attractive potential function around the goal to attract the vehicle. In this research, laser range finder is used as range sensor. An obstacle detected by the sensor creates repulsive vector. Differential global positioning system (DGPS) and digital compass are used to measure the current vehicle position and orientation. The measured vehicle position is also used to create attractive vector. This paper proposes a new concept of potential field based navigation which controls unmanned vehicle's speed and steering. The magnitude of repulsive force based on the proposed algorithm is designed not to be over the magnitude of attractive force while the magnitude is increased linearly as being closer to obstacle. Consequently, the vehicle experiences a generalized force toward the negative gradient of the total potential. This force drives the vehicle downhill towards its goal configuration until the vehicle reaches minimum potential and it stops. The effectiveness of the proposed APF for unmanned vehicle is verified through simulation and experiment.

A CHARACTERIZATION OF CONCENTRIC HYPERSPHERES IN ℝn

  • Kim, Dong-Soo;Kim, Young Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.531-538
    • /
    • 2014
  • Concentric hyperspheres in the n-dimensional Euclidean space $\mathbb{R}^n$ are the level hypersurfaces of a radial function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$. The magnitude $||{\nabla}f||$ of the gradient of such a radial function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$ is a function of the function f. We are interested in the converse problem. As a result, we show that if the magnitude of the gradient of a function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$ with isolated critical points is a function of f itself, then f is either a radial function or a function of a linear function. That is, the level hypersurfaces are either concentric hyperspheres or parallel hyperplanes. As a corollary, we see that if the magnitude of a conservative vector field with isolated singularities on $\mathbb{R}^n$ is a function of its scalar potential, then either it is a central vector field or it has constant direction.

Could Decimal-binary Vector be a Representative of DNA Sequence for Classification?

  • Sanjaya, Prima;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • v.5 no.3
    • /
    • pp.8-15
    • /
    • 2016
  • In recent years, one of deep learning models called Deep Belief Network (DBN) which formed by stacking restricted Boltzman machine in a greedy fashion has beed widely used for classification and recognition. With an ability to extracting features of high-level abstraction and deal with higher dimensional data structure, this model has ouperformed outstanding result on image and speech recognition. In this research, we assess the applicability of deep learning in dna classification level. Since the training phase of DBN is costly expensive, specially if deals with DNA sequence with thousand of variables, we introduce a new encoding method, using decimal-binary vector to represent the sequence as input to the model, thereafter compare with one-hot-vector encoding in two datasets. We evaluated our proposed model with different contrastive algorithms which achieved significant improvement for the training speed with comparable classification result. This result has shown a potential of using decimal-binary vector on DBN for DNA sequence to solve other sequence problem in bioinformatics.

A 3 Dimensional Characteristic Analysis of SLIM by the 2-D Finite Element Method (2차원 유한요소법에 의한 SLIM의 3차원적 특성 해석)

  • Cho, Yun-Hyun;Kim, Yong-Joo;Shin, Pan-Seok;Kang, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.37-42
    • /
    • 1990
  • In order to obtain optimal design criteria and operating parameters, a Single-sided Linear Induction Motor (SLIM) is analysed by using a 2-D finite element method with magnetic and current vector potential. In the analysing procedures, the governing equation is derived from Maxwell's equation combined with the magnetic vector potential. As a forcing term, 3-phase voltage source is employed using the Kirchhoff's voltage law in order to look into effects of the unbalanced 3-phase currents and air gap flux density. Also, 2ndary eddy current distribution, longitudinal end and transverse edge effects are in turns visualized by flux lines in 3 different analysing planes as functions of frequency and input power.

  • PDF

Electromagnetic Field Analysis and Measurements of Cylindrical Linear Oscillatory Actuator using Transfer Relations Theorem (전자기 전달관계를 이용한 원통형 직선 왕복구동 액추에이터의 전자기 특성 해석 및 실험)

  • Jang, Seok-Myeong;Kim, Hyun-Kyu;Choi, Jang-Young;Lee, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.89-91
    • /
    • 2008
  • This paper deals with the thrust calculations and the measurements of a cylindrical Linear Oscillatory Actuator (LOA) sing Transfer Relations Theorem (TRT), namely, Melcher's methodology. Using transfer relations derived in terms of a magnetic vector potential and a two-dimensional (2-d) cylindrical coordinate system, this paper derives analytical solutions for the magnetic vector potential, magnetic fields due to Permanent Magnets (PMs) and stator winding currents and the thrust. The analytical results are validated by non-linear Finite Element (FE) analyses. In particular, test results such as thrust and back-emf measurements are given to confirm the analysis.

  • PDF

Three Demensional magnetostatic Analysis Using Tetrahedral Edge Elements (사면체 변요소를 이용한 3차원 정자장 해석)

  • Kim, Dong-Soo;Lee, Hong-Bae;Choi, Kyung;Jung, Hyun-Kyo;Hahn, Song-Yop
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.8
    • /
    • pp.751-756
    • /
    • 1991
  • In this paper, three dimensional magnetostatic fields are analysed using tetrahedral edge elements, magnetic vector potential and modified formulation of weighted residual method. If we define unknown variables in mesh edges, some conditions, such as Coulomb gauge condition in magnetic vector potential are naturally satisfied. So with less memory space, we can obtain more accurate solutions than the method where unknown variables are defined at nodes. Reliability and utility of this method are verified in two examples.

  • PDF