• Title/Summary/Keyword: Vector Machines

Search Result 531, Processing Time 0.022 seconds

Early warning of hazard for pipelines by acoustic recognition using principal component analysis and one-class support vector machines

  • Wan, Chunfeng;Mita, Akira
    • Smart Structures and Systems
    • /
    • v.6 no.4
    • /
    • pp.405-421
    • /
    • 2010
  • This paper proposes a method for early warning of hazard for pipelines. Many pipelines transport dangerous contents so that any damage incurred might lead to catastrophic consequences. However, most of these damages are usually a result of surrounding third-party activities, mainly the constructions. In order to prevent accidents and disasters, detection of potential hazards from third-party activities is indispensable. This paper focuses on recognizing the running of construction machines because they indicate the activity of the constructions. Acoustic information is applied for the recognition and a novel pipeline monitoring approach is proposed. Principal Component Analysis (PCA) is applied. The obtained Eigenvalues are regarded as the special signature and thus used for building feature vectors. One-class Support Vector Machine (SVM) is used for the classifier. The denoising ability of PCA can make it robust to noise interference, while the powerful classifying ability of SVM can provide good recognition results. Some related issues such as standardization are also studied and discussed. On-site experiments are conducted and results prove the effectiveness of the proposed early warning method. Thus the possible hazards can be prevented and the integrity of pipelines can be ensured.

Support vector machines with optimal instance selection: An application to bankruptcy prediction

  • Ahn Hyun-Chul;Kim Kyoung-Jae;Han In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.167-175
    • /
    • 2006
  • Building accurate corporate bankruptcy prediction models has been one of the most important research issues in finance. Recently, support vector machines (SVMs) are popularly applied to bankruptcy prediction because of its many strong points. However, in order to use SVM, a modeler should determine several factors by heuristics, which hinders from obtaining accurate prediction results by using SVM. As a result, some researchers have tried to optimize these factors, especially the feature subset and kernel parameters of SVM But, there have been no studies that have attempted to determine appropriate instance subset of SVM, although it may improve the performance by eliminating distorted cases. Thus in the study, we propose the simultaneous optimization of the instance selection as well as the parameters of a kernel function of SVM by using genetic algorithms (GAs). Experimental results show that our model outperforms not only conventional SVM, but also prior approaches for optimizing SVM.

  • PDF

Comparison of Feature Selection Methods in Support Vector Machines (지지벡터기계의 변수 선택방법 비교)

  • Kim, Kwangsu;Park, Changyi
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.1
    • /
    • pp.131-139
    • /
    • 2013
  • Support vector machines(SVM) may perform poorly in the presence of noise variables; in addition, it is difficult to identify the importance of each variable in the resulting classifier. A feature selection can improve the interpretability and the accuracy of SVM. Most existing studies concern feature selection in the linear SVM through penalty functions yielding sparse solutions. Note that one usually adopts nonlinear kernels for the accuracy of classification in practice. Hence feature selection is still desirable for nonlinear SVMs. In this paper, we compare the performances of nonlinear feature selection methods such as component selection and smoothing operator(COSSO) and kernel iterative feature extraction(KNIFE) on simulated and real data sets.

Vehicle License Plate Extraction and Verification Using Compounded Feature Information and Support Vector Machines (복합 특성 정보와 SVM을 이용한 차량 번호판 추출 및 검증)

  • Kim, Ha-Young;Ahn, Myung-Seok;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.493-496
    • /
    • 2005
  • In this paper, we propose a new approach to detect candidate area of vehicle license plate using compounded color and vertical edge information it's own. Also, we propose a verification course, to compressed image generated by Fast DCT, using SVM to increase accuracy of extracted vechicle license plate area. Proposed method is consider that vehicle's position, become a object of it's license plate recognition, has various angle, scale and include enough environment informations. As a experimental results, proposed method shows a superior performance compared with the case that not includes verification course using SVM.

  • PDF

Creating Level Set Trees Using One-Class Support Vector Machines (One-Class 서포트 벡터 머신을 이용한 레벨 셋 트리 생성)

  • Lee, Gyemin
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.86-92
    • /
    • 2015
  • A level set tree provides a useful representation of a multidimensional density function. Visualizing the data structure as a tree offers many advantages for data analysis and clustering. In this paper, we present a level set tree estimation algorithm for use with a set of data points. The proposed algorithm creates a level set tree from a family of level sets estimated over a whole range of levels from zero to infinity. Instead of estimating density function then thresholding, we directly estimate the density level sets using one-class support vector machines (OC-SVMs). The level set estimation is facilitated by the OC-SVM solution path algorithm. We demonstrate the proposed level set tree algorithm on benchmark data sets.

Use of Support Vector Machines for Defect Detection of Metal Bellows Welding (금속 벨로우즈 용접의 결점 탐지를 위한 서포터 벡터 머신의 이용)

  • Park, Min-Chul;Byun, Young-Tae;Kim, Dong-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.1
    • /
    • pp.11-20
    • /
    • 2015
  • Typically welded bellows are checked with human eye and microscope, and then go through leakage test of gas. The proposed system alternates these heuristic techniques using support vector machines. Image procedures in the proposed method can cover the irregularity problem induced from human being. To get easy observation through microscope, 3D display system is also exploited. Experimental results from this automatic measurement show the welding detection is done within one tenth of permitted error range.

Vibration based bridge scour evaluation: A data-driven method using support vector machines

  • Zhang, Zhiming;Sun, Chao;Li, Changbin;Sun, Mingxuan
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.2
    • /
    • pp.125-145
    • /
    • 2019
  • Bridge scour is one of the predominant causes of bridge failure. Current climate deterioration leads to increase of flooding frequency and severity and thus poses a higher risk of bridge scour failure than before. Recent studies have explored extensively the vibration-based scour monitoring technique by analyzing the structural modal properties before and after damage. However, the state-of-art of this area lacks a systematic approach with sufficient robustness and credibility for practical decision making. This paper attempts to develop a data-driven methodology for bridge scour monitoring using support vector machines. This study extracts features from the bridge dynamic responses based on a generic sensitivity study on the bridge's modal properties and selects the features that are significantly contributive to bridge scour detection. Results indicate that the proposed data-driven method can quantify the bridge scour damage with satisfactory accuracy for most cases. This paper provides an alternative methodology for bridge scour evaluation using the machine learning method. It has the potential to be practically applied for bridge safety assessment in case that scour happens.

Research on Speed Estimation Method of Induction Motor based on Improved Fuzzy Kalman Filtering

  • Chen, Dezhi;Bai, Baodong;Du, Ning;Li, Baopeng;Wang, Jiayin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.272-275
    • /
    • 2014
  • An improved fuzzy Kalman filtering speed estimation scheme was proposed by means of measuring stator side voltage and current value based on vector control state equation of induction motor. The designed fuzzy adaptive controller conducted recursive online correction of measurement noise covariance matrix by monitoring the ratio of theory residuals and actual residuals to make it approach real noise level gradually, allowing the filter to perform optimal estimation to improve estimation accuracy of EKF. Meanwhile, co-simulation scheme based on MATLAB and Ansoft was proposed in order to improve simulation accuracy. Field-circuit coupling problems of induction motor under the action of vector control were solved and the parameter optimization accuracy was improved dramatically. The simulation and experimental results show that this algorithm has a strong ability to inhibit the random measurement noise. It is able to estimate motor speed accurately, and has superior static and dynamic characteristics.

Stability Comparison of New Simplified Speed Sensorless Vector Control Systems for Induction Motors

  • Mangindaan, Glanny M.Ch.;Tsuji, Mineo;Hamasaki, Sin-Ichi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.126-131
    • /
    • 2014
  • This paper discusses stability of new simplified sensorless vector control systems of induction motors (IM). The simplified sensorless systems estimate the flux angle by using the output voltage of d-axis PI current controller to achieve the q-axis flux zero. Two simplified sensorless systems are studied. The difference of two systems is the presence or absence of a q-axis PI current controller. The systems stability is compared by deriving linear state equations and showing root loci and unstable regions. Furthermore, transient responses and experiment results make clear the stability of the proposed system.

Analytical Performance Modelling of Slotted Surface-Mounted Permanent Magnet Machines with Rotor Eccentricity

  • Yan, Bo;Wang, Xiuhe;Yang, Yubo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.778-789
    • /
    • 2017
  • This paper presents an improved subdomain method to predict the magnet field distributions and electromagnetic performance of the surface-mounted permanent magnet (SPM) machines with static or dynamic eccentricity. Conventional subdomain models are either based on the scalar magnet potential to predict the rotor eccentricity effect or dependent on the magnetic vector potential without considering the eccentric rotor. In this paper, both the magnetic vector potential and the perturbation theory are introduced in order to accurately calculate the effect of rotor eccentricity on the open-circuit and armature reaction performance. The calculation results are presented and validated by the corresponding finite-element method (FEM) results.