• 제목/요약/키워드: Vector Data

검색결과 3,325건 처리시간 0.031초

온라인 주식게시판 정보와 주식시장 활동에 관한 상관관계 연구 (A Study about the Correlation between Information on Stock Message Boards and Stock Market Activity)

  • 김현모;윤호영;소리;박재홍
    • Asia pacific journal of information systems
    • /
    • 제24권4호
    • /
    • pp.559-575
    • /
    • 2014
  • Individual investors are increasingly flocking to message boards to seek, clarify, and exchange information. Businesses like Seekingalpha.com and business magazines like Fortune are evaluating, synthesizing, and reporting the comments made on message boards or blogs. In March of 2012, Yahoo! Finance Message Boards recorded 45 million unique visitors per month followed by AOL Money and Finance (19.8 million), and Google Finance (1.6 million) [McIntyre, 2012]. Previous studies in the finance literature suggest that online communities often provide more accurate information than analyst forecasts [Bagnoli et al., 1999; Clarkson et al., 2006]. Some studies empirically show that the volume of posts in online communities have a positive relationship with market activities (e.g., trading volumes) [Antweiler and Frank, 2004; Bagnoli et al., 1999; Das and Chen, 2007; Tumarkin and Whitelaw, 2001]. The findings indicate that information in online communities does impact investors' investment decisions and trading behaviors. However, research explicating the correlation between information on online communities and stock market activities (e.g., trading volume) is still evolving. Thus, it is important to ask whether a volume of posts on online communities influences trading volumes and whether trading volumes also influence these communities. Online stock message boards offer two different types of information, which can be explained using an economic and a psychological perspective. From a purely economic perspective, one would expect that stock message boards would have a beneficial effect, since they provide timely information at a much lower cost [Bagnoli et al., 1999; Clarkson et al., 2006; Birchler and Butler, 2007]. This indicates that information in stock message boards may provide valuable information investors can use to predict stock market activities and thus may use to make better investment decisions. On the other hand, psychological studies have shown that stock message boards may not necessarily make investors more informed. The related literature argues that confirmation bias causes investors to seek other investors with the same opinions on these stock message boards [Chen and Gu, 2009; Park et al., 2013]. For example, investors may want to share their painful investment experiences with others on stock message boards and are relieved to find they are not alone. In this case, the information on these stock message boards mainly reflects past experience or past information and not valuable and predictable information for market activities. This study thus investigates the two roles of stock message boards-providing valuable information to make future investment decisions or sharing past experiences that reflect mainly investors' painful or boastful stories. If stock message boards do provide valuable information for stock investment decisions, then investors will use this information and thereby influence stock market activities (e.g., trading volume). On the contrary, if investors made investment decisions and visit stock message boards later, they will mainly share their past experiences with others. In this case, past activities in the stock market will influence the stock message boards. These arguments indicate that there is a correlation between information posted on stock message boards and stock market activities. The previous literature has examined the impact of stock sentiments or the number of posts on stock market activities (e.g., trading volume, volatility, stock prices). However, the studies related to stock sentiments found it difficult to obtain significant results. It is not easy to identify useful information among the millions of posts, many of which can be just noise. As a result, the overall sentiments of stock message boards often carry little information for future stock movements [Das and Chen, 2001; Antweiler and Frank, 2004]. This study notes that as a dependent variable, trading volume is more reliable for capturing the effect of stock message board activities. The finance literature argues that trading volume is an indicator of stock price movements [Das et al., 2005; Das and Chen, 2007]. In this regard, this study investigates the correlation between a number of posts (information on stock message boards) and trading volume (stock market activity). We collected about 100,000 messages of 40 companies at KOSPI (Korea Composite Stock Price Index) from Paxnet, the most popular Korean online stock message board. The messages we collected were divided into in-trading and after-trading hours to examine the correlation between the numbers of posts and trading volumes in detail. Also we collected the volume of the stock of the 40 companies. The vector regression analysis and the granger causality test, 3SLS analysis were performed on our panel data sets. We found that the number of posts on online stock message boards is positively related to prior stock trade volume. Also, we found that the impact of the number of posts on stock trading volumes is not statistically significant. Also, we empirically showed the correlation between stock trading volumes and the number of posts on stock message boards. The results of this study contribute to the IS and finance literature in that we identified online stock message board's two roles. Also, this study suggests that stock trading managers should carefully monitor information on stock message boards to understand stock market activities in advance.

머신러닝 기법의 산림 총일차생산성 예측 모델 비교 (Predicting Forest Gross Primary Production Using Machine Learning Algorithms)

  • 이보라;장근창;김은숙;강민석;천정화;임종환
    • 한국농림기상학회지
    • /
    • 제21권1호
    • /
    • pp.29-41
    • /
    • 2019
  • 산림생태계에서 총일차생산성(Gross Primary Production, GPP)은 기후변화에 따른 산림의 생산성과 그에 영향을 미치는 식물계절, 건강성, 탄소 순환 등을 대표하는 지표이다. 총일차생산성을 추정하기 위해서는 에디공분산 타워 자료나 위성영상관측자료를 이용하기도 하고 물리지형적 한계나 기후변화 등을 고려하기 위해 기작기반모델링을 활용하기도 한다. 그러나 총일차생산성을 포함한 산림 탄소 순환의 기작기반 모델링은 식물의 생물, 생리, 화학적 기작들의 반응과 지형, 기후 및 시간 등과 같은 환경 조건들이 복잡하게 얽혀 있어 비선형적이고 유연성이 떨어져 반응에 영향을 주는 조건들을 모두 적용하기가 어렵다. 본 연구에서는 산림 생산성 추정 모델을 에디공분산 자료와 인공위성영상 정보를 사용하여 기계학습 알고리즘을 사용한 모델들로 구축해 보고 그 사용 및 확장 가능성을 검토해 보고자 하였다. 설명변수들로는 에디공분산자료와 인공위성자료에서 나온 대기기상인자들을 사용하였고 검증자료로 에디공분산 타워에서 관측된 총일차생산성을 사용하였다. 산림생산성 추정 모델은 1) 에디공분산 관측 기온($T_{air}$), 태양복사($R_d$), 상대습도(RH), 강수(PPT), 증발산(ET) 자료, 2) MODIS 관측 기온(T), 일사량($R_{sd}$), VPD 자료(개량식생지수 제외), 3) MODIS 관측 기온(T), 일사량($R_{sd}$), VPD, 개량식생지수(EVI) 자료를 사용하는 세 가지 경우로 나누어 구축하여 2006 - 2013년 자료로 훈련시키고 2014, 2015년 자료로 검증하였다. 기계학습 알고리즘은 support vector machine (SVM), random forest (RF), artificial neural network (ANN)를 사용하였고 단순 비교를 위해 고전적 방법인 multiple linear regression model (LM)을 사용하였다. 그 결과, 에디공분산 입력자료로 훈련시킨 모델의 예측력은 피어슨 상관계수 0.89 - 0.92 (MSE = 1.24 - 1.62), MODIS 입력자료로 훈련시킨 모델의 예측력은 개량식생지수 제외된 모델은 0.82 - 0.86 (MSE = 1.99 - 2.45), 개량식생지수가 포함된 모델은 0.92 - 0.93(MSE = 1.00 - 1.24)을 보였다. 이러한 결과는 산림총일차생산성 추정 모델 구축에 있어 MODIS인공위성 영상 정보 기반으로 기계학습 알고리즘을 사용하는 것에 대한 높은 활용가능성을 보여주었다.

Sentinel-1 SAR 영상과 AI 기법을 이용한 국내 중소규모 농업저수지의 수표면적 산출 (An Artificial Intelligence Approach to Waterbody Detection of the Agricultural Reservoirs in South Korea Using Sentinel-1 SAR Images)

  • 최소연;윤유정;강종구;박강현;김근아;이슬찬;최민하;정하규;이양원
    • 대한원격탐사학회지
    • /
    • 제38권5_3호
    • /
    • pp.925-938
    • /
    • 2022
  • 농업용 저수지는 전국적으로 중요한 수자원으로 기후변화에 따른 가뭄과 같은 이상기후의 영향에 취약한 특성을 가지며 적절한 운영을 위해 강화된 관리가 필요하다. 지속적인 모니터링을 통한 수위 추적(water level tracking)이 필요하지만 현실적인 문제로 현장 실측 및 관측이 어려운 실정이다. 본 연구는 저수지 수표면적을 측정하기 위해 광역 모니터링이 가능한 위성레이더 자료를 이용하여 4가지 AI 모델 간의 수체 탐지 성능에 대해 객관적인 비교를 제시한다. 위성 레이더자료는 Sentinel-1 SAR 이미지를 사용하였으며, 광학영상과 달리 기상환경에 영향을 적게 받기 때문에 장기 모니터링에 적합하다. 드론 이미지, Sentinel-1 SAR 그리고 DSM 데이터를 사용하여 Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), Automated Machine Learning (AutoML)의 4가지 AI 모델을 구축했다. 연구대상 저수지는 총 22개소로 유효저수량이 30만톤 미만의 중소형 저수지이다. 총 45개 이미지가 모델 훈련과 검증에 사용되었으며, 연구 결과 AutoML 모델이 Accuracy=0.92, mIoU=0.81로 다른 3가지 모델에 비해 수체 픽셀 분류에서 0.01-0.03 더 나은 것을 보여주었다. 해당 결과는 SAR 영상으로부터 AutoML을 이용한 중소형 저수지 대상의 수체 분류 기법이 기존의 머신러닝 기법만큼의 성능을 보이는 것을 보여주었고, 학습을 통한 수표면적 분류 기술의 저수지 모니터링에 대한 적용 가능성을 보여주었다.

금강하구 연안역에서 HF radar로 측정한 유속의 정확도 (Accuracy of HF radar-derived surface current data in the coastal waters off the Keum River estuary)

  • 이상호;문홍배;백혜연;김창수;손영태;권효근;최병주
    • 한국해양학회지:바다
    • /
    • 제13권1호
    • /
    • pp.42-55
    • /
    • 2008
  • 금강하구 연안역에서 HF radar로 측정한 유속의 정확도를 평가하기 위해 HF radar의 마주보는 radial 유속들을 비교하고, HF radar로 측정한 유속을 현장측정 유속과 비교하였다. 비교 자료들에 대한 회귀선과 편차는 주성분 분석(Principal Component Analysis)으로 구하였다. HF radar site를 연결하는 선의 중간지점에서 마주보는 radial vector를 비교하였을 때 RMS 편차는 동계에 4.4 cm/s, 하계에 5.4 cm/s이었다. HF radar와 유속계로 측정한 유속성분을 비교하여 분석된 RMS 편차에서 GDOP(Geometric Dilution of Precision) 효과를 제거하였을 때 HF radar의 합성 속도 측정오차는 GDOP 값이 적절한 정점들에서 5.1 cm/s 이내였다. 서로 다른 두 방법에 의해 구해진 이 결과는 연구해역에서 HF radar로 측정된 유속의 정확도 하한이 5.4 cm/s임을 제시한다. 기존의 연구에서와 같이 RMS 편차는 섬 주변에 있는 관측점에서 크게 되고, 두 radar에서 평균거리가 멀어질수록 신호 대 잡음수준과 radial vector 교차각의 감소로 인해 증가하였다. GDOP 값을 이용한 오차분리 과정에서 속도성분별 GDOP 값이 유사하고 비교 유속의 성분별 RMS 편차도 비슷한 값을 보이는 경우 HF radar 유속의 오차가 불확실한 값으로 도출될 수도 있음이 밝혀졌다. GDOP가 정상적인 radar 관측 범위 내에 있는 정점에서 측정된 유속을 조류와 해류로 분리하였을 때 HF radar 유속에서 구해진 조류타원의 특성은 유속계로 측정된 타원특성과 잘 부합하였고, 해류의 시간적 변화는 바람과 밀도장의 외력에 의한 물리적 과정을 반영하는 반응을 보였다.

단핵구세포주 THP-1의 분화과정에서 Ref-1의 역할 (The Role of Ref-1 in the Differentiation Process of Monocytic THP-1 Cells)

  • 김다솔;김강미;김관회;박영철
    • 생명과학회지
    • /
    • 제34권4호
    • /
    • pp.271-278
    • /
    • 2024
  • Redox factor (Ref)-1은 세포질과 핵을 오가며 산화환원(redox) 환경에 민감한 transcription factors의 조절과 손상된 DNA의 교정 등 다양한 기능을 수행하는 단백질이다. 하지만, 단핵구(monocyte)의 대식세포(macrophage)로의 분화과정에서 Ref-1의 역할은 잘 알려져 있지 않다. 본 연구에서는 인간 단핵구세포주 THP-1을 이용하여 Ref-1의 단핵구 분화과정에 미치는 영향을 조사하였다. 분화제 phorbol 12-myristate 13-acetate (PMA)는 시간이 지날수록 세포의 부착능을 증가시키고 포식기능의 현저한 증가를 보이지만, Ref-1의 세포 내 양을 현저히 감소시켰다. Ref-1의 억제제인 E3330와 siRNA 기법을 이용한 Ref-1 knock- down은 PMA에 의한 세포 부착능과 막표면 분화인자의 발현을 현저히 감소시켰다. 이는 PMA에 자극을 받은 THP-1 세포의 분화 초기과정에는 Ref-1의 역할이 절대적으로 필요하다는 것을 의미한다. 단핵구 분화과정에서 Ref-1의 작용기전을 조사하기 위하여, PMA로 자극한 THP-1 세포의 세포질과 핵에서 Ref-1의 분포를 조사하였다. 놀랍게도, PMA 자극은 Ref-1을 빠르게 핵으로 이동하는 결과를 나타내었다. Ref-1의 핵으로의 이동이 단핵구 분화에 필요함을 증명하기 위하여, nuclear localization sequence (NLS)가 제거된 Ref-1 vector를 사용하였다. 그 결과, 핵으로의 이동이 제한된 ∆NLS Ref-1의 과발현은 PMA 자극에 의한 막표면 단백질의 발현 억제와 포식기능의 현저한 감소를 보였다. 이를 종합하면, Ref-1은 분화제 자극에 의한 분화 유도 초기과정에 핵으로 이동하여 다양한 분화인자의 발현에 관여하는 것으로 보인다.

온라인 주식 포럼의 핫토픽 탐지를 위한 감성분석 모형의 개발 (Development of Sentiment Analysis Model for the hot topic detection of online stock forums)

  • 홍태호;이태원;리징징
    • 지능정보연구
    • /
    • 제22권1호
    • /
    • pp.187-204
    • /
    • 2016
  • 소셜 미디어를 이용하는 사용자들이 직접 작성한 의견 혹은 리뷰를 이용하여 상호간의 교류 및 정보를 공유하게 되었다. 이를 통해 고객리뷰를 이용하는 오피니언마이닝, 웹마이닝 및 감성분석 등 다양한 연구분야에서의 연구가 진행되기 시작하였다. 특히, 감성분석은 어떠한 토픽(주제)를 기준으로 직접적으로 글을 작성한 사람들의 태도, 입장 및 감성을 알아내는데 목적을 두고 있다. 고객의 의견을 내포하고 있는 정보 혹은 데이터는 감성분석을 위한 핵심 데이터가 되기 때문에 토픽을 통한 고객들의 의견을 분석하는데 효율적이며, 기업에서는 소비자들의 니즈에 맞는 마케팅 혹은 투자자들의 시장동향에 따른 많은 투자가 이루어지고 있다. 본 연구에서는 중국의 온라인 시나 주식 포럼에서 사용자들이 직접 작성한 포스팅(글)을 이용하여 기존에 제시된 토픽들로부터 핫토픽을 선정하고 탐지하고자 한다. 기존에 사용된 감성 사전을 활용하여 토픽들에 대한 감성값과 극성을 분류하고, 군집분석을 통해 핫토픽을 선정하였다. 핫토픽을 선정하기 위해 k-means 알고리즘을 이용하였으며, 추가로 인공지능기법인 SOM을 적용하여 핫토픽 선정하는 절차를 제시하였다. 또한, 로짓, 의사결정나무, SVM 등의 데이터마이닝 기법을 이용하여 핫토픽 사전 탐지를 하는 감성분석을 위한 모형을 개발하여 관심지수를 통해 선정된 핫토픽과 탐지된 핫토픽을 비교하였다. 본 연구를 통해 핫토픽에 대한 정보 제공함으로써 최신 동향에 대한 흐름을 알 수 있게 되고, 주식 포럼에 대한 핫토픽은 주식 시장에서의 투자자들에게 유용한 정보를 제공하게 될 뿐만 아니라 소비자들의 니즈를 충족시킬 수 있을 것이라 기대된다.

지하수유동해석을 위한 한국형 분석시스템의 개발 (Koreanized Analysis System Development for Groundwater Flow Interpretation)

  • 최윤영
    • 한국방재학회 논문집
    • /
    • 제3권3호
    • /
    • pp.151-163
    • /
    • 2003
  • 본 연구에서는 한국형 지하수 프로그램 개발(3-DFM, 3-Dimensional Finite Difference Method)을 위하여 대수층에 있어 지형 지질상태가 지하수유동시스템내에서 동적거동을 하는 것으로 취급하여 유동과정의 알고리즘을 확립토록 하였다. 본 연구에서 개발된 3-DFM모델은 입력변수 자료에 대한 설정이 모두 한글로 구성되어 있으며, 각 입력자료와 매개변수들의 이해와 적용치에 대한 도움말을 설정하여 두었다. 따라서, 입력변수에 대해서는 아이콘을 입력변수에 두면 각각에 대한 상세한 정보를 알 수 있도록 설계하였다. 또한, 각 지층의 지질경계 상태나 초기수위자료를 지정할 때는 work sheet상에서 간단히 지정할 수 있도록 설계되어 있다. 그리고 각 대수층의 특성과 더불어 정류 및 부정류 해석시에 각 매개변수들에 대한 입력은 기존의 모델과 같이 복잡하지 않도록 활성칸이 설정되도록 설계되어 있다. 최종 입력자료를 이용한 분석결과에서는 우측에 입력자료에 대하여 설명과 더불어 좌측에 분석 결과치를 나타나게 하였으며 이에 대한 결과는 TXT파일로도 출력할 수 있도록 설정하였다. 본 연구에서 개발된 모델은 유한차분법을 이용한 수치모델이며, 실제 함양량을 적용하고 매개변수들을 결정하여 관측 지하수두치와 모의발생으로 얻은 계산 지하수두치를 비교 분석하여 개발모델의 적용성을 검토하였다. 본 연구에서는 제주도 세화리 및 송당리일대의 양수에 따른 지하수 유동시스템 해석을 위하여 3-DFM모델을 적용 분석한 결과, 정류상태에서 따른 관측치와 계산된 지하수두와의 상대오차백분율(E.P.)이 $0.03{\sim}0.07$의 범위로서 관측치와 거의 일치하였다. 그리고 분석유역의 양수 전의 모의발생분석 결과를 이용하여 지하등수두분포와 유속벡터를 산정한 결과 지하수 유동분포는 높은오름과 문석이오름 등에서 월랑봉, 용눈이오름 및 손자봉 등 각 방향으로 고르게 유출되고 있는 것으로 분석되었다. 이러한 분석결과는 MODFLOW모델과 비교할 때 일치된 결과를 나타내었다.

계층 클러스터 트리 기반 라만 스펙트럼 식별 고속 검색 알고리즘 (A Hierarchical Cluster Tree Based Fast Searching Algorithm for Raman Spectroscopic Identification)

  • 김순금;고대영;박준규;박아론;백성준
    • 한국산학기술학회논문지
    • /
    • 제20권3호
    • /
    • pp.562-569
    • /
    • 2019
  • 최근에 원 거리에서 폭발 물질의 감지를 위해 라만 분광 기기의 관심이 점차 증가하고 있다. 더불어 측정된 화학물질에 대한 라만 스펙트럼을 대용량 데이터베이스의 알려진 라만 스펙트라와 비교하여 식별할 수 있는 고속 검색 방법에 대한 요구도 커지고 있다. 지금까지 가장 간단하고 널리 사용되는 방법은 주어진 스펙트럼과 데이터베이스 스펙트라 사이의 유클리드 거리를 계산하고 비교하는 방법이다. 하지만 고차원 데이터의 속성으로 검색의 문제는 그리 간단하지 않다. 가장 큰 문제점중의 하나는 검색 방법에 있어서 연산량이 많아 계산 시간이 너무 오래 걸린다는 것이다. 이러한 문제점을 극복하기 위해, 우리는 정렬된 분산에 따른 MPS Sort+PDS 방법을 제안하였다. 이 방법은 벡터의 두 개의 주요한 특징으로 평균과 분산을 사용하여 후보가 될 수 없는 많은 코드워드를 계산하지 않으므로 연산량을 줄이고 계산 시간을 줄여준다. 본 논문에서 우리는 기존의 방법보다 더욱 더 향상된 2가지 새로운 방법의 고속 검색 알고리즘을 제안한다. PCA+PDS 방법은 전체 데이터를 사용하는 거리 계산과 똑같은 결과를 가지면서 PCA 변환을 통해 데이터의 차수를 감소시켜 계산량을 줄여준다. Hierarchical Cluster Tree 알고리즘은 PCA 변환된 스펙트라 데이터를 사용하여 이진 계층 클러스터 트리를 만든다. 그런 후 입력 스펙트럼과 가장 가까운 클러스터부터 검색을 시작하여 후보가 될 수 없는 많은 스펙트라를 계산하지 않으므로 연산량을 줄이고 계산 시간을 줄여준다. 실험은 정렬된 분산에 따른 MPS Sort+PDS와 비교하여 PCA+PDS는 60.06%의 성능 향상을 보였다. Hierarchical Cluster Tree는 PCA+PDS와 비교하여 17.74%의 성능향상을 보였다. 실험결과는 제안된 알고리즘이 고속 검색에 적합함을 확인시켜 준다.

머신러닝기반 범죄발생 위험지역 예측 (Predicting Crime Risky Area Using Machine Learning)

  • 허선영;김주영;문태헌
    • 한국지리정보학회지
    • /
    • 제21권4호
    • /
    • pp.64-80
    • /
    • 2018
  • 우리나라의 시민들은 범죄에 대한 일반적인 사항만을 알 수 있을 뿐, 자신이 범죄위험에 얼마나 노출되어 있는지를 파악하기 어렵다. 경찰의 입장에서도 범죄발생 지역을 예측할 수 있다면 경찰력이 부족한 상황에서 효율성 있게 범죄에 대처 가능할 것이지만 아직 우리나라에서는 예측시스템이 없고, 관련 연구도 매우 부족한 실정이다. 이에 본 연구에서는 범죄발생 위험지역 예측 자동화 시스템 개발의 첫 번째 단계로 빅데이터로 구축 가능한 범죄정보와 도시지역 자료를 바탕으로 머신러닝 방식을 통해 한국형 범죄발생 위험지역 예측 모형을 개발하고자 한다. 또한 시나리오를 가정하여 범죄발생 확률을 지도로 시각화함으로써 사용자의 이해도를 높이도록 하였다. 선행 연구 및 사례에서 범죄발생에 영향을 미치는 요인 중 빅데이터로 구축 가능한 범죄정보, 날씨정보(기온, 강수량, 풍속, 습도, 일조, 일사, 적설, 전운량), 지역정보(평균 건폐율, 평균 용적율, 평균 높이, 총 건축물수, 평균 공시지가, 평균 주거용도면적, 평균 지상층수)를 머신러닝에 활용할 수 있도록 데이터를 사전 처리하였다. 머신러닝 알고리즘으로서 지도학습 모형 중 다양한 분야에서 활용되며 정확도가 높다고 알려진 의사결정나무모형, 랜덤포레스트모형, Support Vector Machine(SVM)모형을 활용하여 범죄 예측 모형을 구축하고 비교 분석하였다. 그 결과 평균 제곱근 오차(Root Mean Square Error, RMSE)가 낮아 예측력이 높은 의사결정나무모형을 최적모형으로 선정하였다. 이를 바탕으로 가장 빈번하게 발생하는 절도와 폭력범죄를 대상으로 시나리오를 작성하여 범죄 발생 위험지역을 예측한 결과, 사례도시 J시는 위험지역이 3가지 패턴으로 발생하는 것으로 나타났으며, 각각 발생확률을 3 등급으로 구분하여 $250{\times}250m$ 단위의 지도형태로 시각화할 수 있었다. 본 연구는 향후 자동화 시스템으로 개발하여 시시각각으로 변하는 도시 상황에 따라 실시간으로 예측 결과를 시각화하여 제공함으로써 보다 범죄로부터 안전한 도시환경 조성에 기여하고자 한다.

계층적 군집화 기반 Re-ID를 활용한 객체별 행동 및 표정 검출용 영상 분석 시스템 (Video Analysis System for Action and Emotion Detection by Object with Hierarchical Clustering based Re-ID)

  • 이상현;양성훈;오승진;강진범
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.89-106
    • /
    • 2022
  • 최근 영상 데이터의 급증으로 이를 효과적으로 처리하기 위해 객체 탐지 및 추적, 행동 인식, 표정 인식, 재식별(Re-ID)과 같은 다양한 컴퓨터비전 기술에 대한 수요도 급증했다. 그러나 객체 탐지 및 추적 기술은 객체의 영상 촬영 장소 이탈과 재등장, 오클루전(Occlusion) 등과 같이 성능을 저하시키는 많은 어려움을 안고 있다. 이에 따라 객체 탐지 및 추적 모델을 근간으로 하는 행동 및 표정 인식 모델 또한 객체별 데이터 추출에 난항을 겪는다. 또한 다양한 모델을 활용한 딥러닝 아키텍처는 병목과 최적화 부족으로 성능 저하를 겪는다. 본 연구에서는 YOLOv5기반 DeepSORT 객체추적 모델, SlowFast 기반 행동 인식 모델, Torchreid 기반 재식별 모델, 그리고 AWS Rekognition의 표정 인식 모델을 활용한 영상 분석 시스템에 단일 연결 계층적 군집화(Single-linkage Hierarchical Clustering)를 활용한 재식별(Re-ID) 기법과 GPU의 메모리 스루풋(Throughput)을 극대화하는 처리 기법을 적용한 행동 및 표정 검출용 영상 분석 시스템을 제안한다. 본 연구에서 제안한 시스템은 간단한 메트릭을 사용하는 재식별 모델의 성능보다 높은 정확도와 실시간에 가까운 처리 성능을 가지며, 객체의 영상 촬영 장소 이탈과 재등장, 오클루전 등에 의한 추적 실패를 방지하고 영상 내 객체별 행동 및 표정 인식 결과를 동일 객체에 지속적으로 연동하여 영상을 효율적으로 분석할 수 있다.