• 제목/요약/키워드: Vector Auto-Regressive

검색결과 29건 처리시간 0.027초

Identification of dynamic characteristics of structures using vector backward auto-regressive model

  • Hung, Chen-Far;Ko, Wen-Jiunn;Peng, Yen-Tun
    • Structural Engineering and Mechanics
    • /
    • 제15권3호
    • /
    • pp.299-314
    • /
    • 2003
  • This investigation presents an efficient method for identifying modal characteristics from the measured displacement, velocity and acceleration signals of multiple channels on structural systems. A Vector Backward Auto-Regressive model (VBAR) that describes the relationship between the output information in different time steps is used to establish a backward state equation. Generally, the accuracy of the identified dynamic characteristics can be improved by increasing the order of the Auto-Regressive model (AR) in cases of measurement of data under noisy circumstances. However, a higher-order AR model also induces more numerical modes, only some of which are the system modes. The proposed VBAR model provides a clear characteristic boundary to separate the system modes from the spurious modes. A numerical example of a lumped-mass model with three DOFs was established to verify the applicability and effectiveness of the proposed method. Finally, an offshore platform model was experimentally employed as an application case to confirm the proposed VBAR method can be applied to real-world structures.

Auto Regressive모델링 기반의 특징점 추출과 Support Vector Machine을 통한 조기수축 부정맥 분류 (Feature Extraction based on Auto Regressive Modeling and an Premature Contraction Arrhythmia Classification using Support Vector Machine)

  • 조익성;권혁숭;김주만;김선종
    • 한국정보통신학회논문지
    • /
    • 제23권2호
    • /
    • pp.117-126
    • /
    • 2019
  • 부정맥 분류를 위한 기존 연구들은 분류의 정확성을 높이기 위해 신경망, 퍼지, 시계열 주파수 분석, 비선형 분석법 등이 연구되어 왔다. 이러한 방법들은 분류율를 향상시키기 위해 정확한 특징점과 많은 양의 신호를 처리해야 하기 때문에 데이터의 가공 및 연산이 복잡하며, 다양한 부정맥을 분류하는데 어려움이 있다. 본 연구에서는 AR(Auto Regressive) 모델링 기반의 특징점 추출과 SVM(Support Vector Machine)을 통한 조기수축 부정맥 분류 방법을 제안한다. 이를 위해 잡음을 제거한 ECG 신호에서 R파를 검출하고 QRS와 RR 간격의 특정 파형 구간을 모델링하였다. 이후 최적 세그먼트 길이(n1, n2), 최적 차수( p1, p2)의 4가지 AR 모델링 변수를 추출하고 SVM을 통해 Normal, PVC, PAC를 분류하였다. 연구의 타당성을 입증하기 위해 MIT-BIH 부정맥 데이터베이스를 대상으로 한 R파의 평균 검출 성능은 99.77%, Normal, PVC, PAC 부정맥은 각각 99.23%, 97.28, 96.62의 평균 분류율을 나타내었다.

Prediction of Hydrogen Masers' Behaviors Against UTCr with R

  • Lee, Ho Seong;Kwon, Taeg Yong;Lee, Young Kyu;Yang, Sung-hoon;Yu, Dai-Hyuk
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권2호
    • /
    • pp.89-98
    • /
    • 2020
  • Prediction of clock behaviors is necessary to generate very high stable system time which is essential for a satellite navigation system. For the purpose, we applied the Auto-Regressive Integrated Moving Average (ARIMA) model to the prediction of two hydrogen masers' behaviors with respect to the rapid Coordinated Universal Time (UTCr). Using the packaged programming language R, we made an analysis and prediction of time series data of [UTCr - clocks]. The maximum variation width of the residuals which were obtained by the difference between the predicted and measured values, was 6.2 ns for 106 days. This variation width was just one-sixth of [UTCr-UTC (KRIS)] published by the BIPM for the same period. Since the two hydrogen masers were found to be strongly correlated, we applied the Vector Auto-Regressive Moving Average (VARMA) model for more accurate prediction. The result showed that the prediction accuarcy was improved by two times for one hydrogen maser.

Granger 및 Toda-Yamamoto 인과 검정을 통한 주요 석유화학단지와 액체화물 항만들의 관계성 연구 (The Relationship Study for Major Petrochemical Complexes and Liquid Cargo Ports by the Granger and Toda-Yamamoto Causality Test)

  • 이광운;신창훈
    • 한국항해항만학회지
    • /
    • 제43권6호
    • /
    • pp.469-474
    • /
    • 2019
  • 세계의 주요 자원중 하나인 원유는 산업의 가장 기초적인 부분을 담당하고 있으며 원유를 통하여 많은 액체화물이 생산되고 있다. 석유화학단지들은 인근의 항만을 통해 원유를 수입후 정제를 통해 석유정제품, 화학생산공업품 등을 생산한다. 본 연구에서는 우리나라의 주요 석유화학단지와 인근에 위치한 액체화물 항만 간의 관계를 확인하고자 울산항, 대산항, 여수광양항을 선정하였다. 항만물동량 시계열 데이터를 이용한 분석을 실시하였으며 VAR 모형을 이용하였다. 이를 수행하기 위해 단위근 검정을 실시했으며 Granger 및 Toda-Yamamoto 인과 검정을 통하여 관계를 확인하였다.

Competition between Online Stock Message Boards in Predictive Power: Focused on Multiple Online Stock Message Boards

  • Kim, Hyun Mo;Park, Jae Hong
    • Asia pacific journal of information systems
    • /
    • 제26권4호
    • /
    • pp.526-541
    • /
    • 2016
  • This research aims to examine the predictive power of multiple online stock message boards, namely, NAVER Finance and PAXNET, which are the most popular stock message boards in South Korea, in stock market activities. If predictive power exists, we then compare the predictive power of multiple online stock message boards. To accomplish the research purpose, we constructed a panel data set with close price, volatility, Spell out acronyms at first mention.PER, and number of posts in 40 companies in three months, and conducted a panel vector auto-regression analysis. The analysis results showed that the number of posts could predict stock market activities. In NAVER Finance, previous number of posts positively influenced volatility on the day. In PAXNET, previous number of posts positively influenced close price, volatility, and PER on the day. Second, we confirmed a difference in the prediction power for stock market activities between multiple online stock message boards. This research is limited by the fact that it only considered 40 companies and three stock market activities. Nevertheless, we found correlation between online stock message board and stock market activities and provided practical implications. We suggest that investors need to focus on specific online message boards to find interesting stock market activities.

VAR분석을 활용한 금융위기 이후 서울 아파트 전세가격 변화 (A Study on the Seoul Apartment Jeonse Price after the Global Financial Crisis in 2008 in the Frame of Vecter Auto Regressive Model(VAR))

  • 김현우;이두헌
    • 한국산학기술학회논문지
    • /
    • 제16권9호
    • /
    • pp.6315-6324
    • /
    • 2015
  • 본 연구에서는 2008년 금융위기 이후 부동산 정책에서 많은 비중을 차지하는 서울의 아파트 전세가격에 가계경제가 어떤 영향을 미치는지 2009년 1월부터 2013년 12월까지 자료를 이용하여 VAR모형을 통해 실증분석하였다. 서울의 전세가격에 미치는 가계경제변수들은 서울 아파트 매매가격, 소비자물가지수, 고용률, 실질GNI, 가계대출금액으로 구성하였다. 분석결과에 따르면, 서울 아파트 전세가격은 단기적으로 가계경제변수들에 영향력을 받는 것으로 나타났다. 또한 가계경제변수들의 구조적 충격에 따른 서울 아파트 전세가격 변동의 상대적 기여도는 단기적으로는 서울 아파트 전세가격 자체 충격에 가장 큰 영향력을 받으며, 시간이 지날수록 가계변수들의 영향력이 커지는 것으로 나타났다. 본 연구결과를 통해 가계경제를 이루는 어떤 요인들이 주택전세가격에 많은 영향을 미치는지 파악할 수 있어 향후 주택가격 안정화를 위한 정책수립에 기여할 것으로 기대된다.

Hybrid CSA optimization with seasonal RVR in traffic flow forecasting

  • Shen, Zhangguo;Wang, Wanliang;Shen, Qing;Li, Zechao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권10호
    • /
    • pp.4887-4907
    • /
    • 2017
  • Accurate traffic flow forecasting is critical to the development and implementation of city intelligent transportation systems. Therefore, it is one of the most important components in the research of urban traffic scheduling. However, traffic flow forecasting involves a rather complex nonlinear data pattern, particularly during workday peak periods, and a lot of research has shown that traffic flow data reveals a seasonal trend. This paper proposes a new traffic flow forecasting model that combines seasonal relevance vector regression with the hybrid chaotic simulated annealing method (SRVRCSA). Additionally, a numerical example of traffic flow data from The Transportation Data Research Laboratory is used to elucidate the forecasting performance of the proposed SRVRCSA model. The forecasting results indicate that the proposed model yields more accurate forecasting results than the seasonal auto regressive integrated moving average (SARIMA), the double seasonal Holt-Winters exponential smoothing (DSHWES), and the relevance vector regression with hybrid Chaotic Simulated Annealing method (RVRCSA) models. The forecasting performance of RVRCSA with different kernel functions is also studied.

Automated data interpretation for practical bridge identification

  • Zhang, J.;Moon, F.L.;Sato, T.
    • Structural Engineering and Mechanics
    • /
    • 제46권3호
    • /
    • pp.433-445
    • /
    • 2013
  • Vibration-based structural identification has become an important tool for structural health monitoring and safety evaluation. However, various kinds of uncertainties (e.g., observation noise) involved in the field test data obstruct automation system identification for accurate and fast structural safety evaluation. A practical way including a data preprocessing procedure and a vector backward auto-regressive (VBAR) method has been investigated for practical bridge identification. The data preprocessing procedure serves to improve the data quality, which consists of multi-level uncertainty mitigation techniques. The VBAR method provides a determinative way to automatically distinguish structural modes from extraneous modes arising from uncertainty. Ambient test data of a cantilever beam is investigated to demonstrate how the proposed method automatically interprets vibration data for structural modal estimation. Especially, structural identification of a truss bridge using field test data is also performed to study the effectiveness of the proposed method for real bridge identification.

국채선물을 이용한 채권포트폴리오의 VECM과 VAR모형에 의한 헤지

  • 한성윤;임병진;원종현
    • 재무관리논총
    • /
    • 제8권1호
    • /
    • pp.231-252
    • /
    • 2002
  • 2000년 7월부터 채권시가평가의 실행으로 채권운용자들도 채권포트폴리오의 위험을 채권선물을 이용하여 통제하거나 감소시키기 위해 헤지를 하여야 한다. 이때 헤지비율을 추정하는 방법으로는 전통적 회귀분석모형, 백터오차수정모형(Vector Error Correction Model : VECM)과 VAR모형(Vector AutoRegressive Model)이 있다. 전통적인 회귀분석모형에 의하여 추정된 헤지비율은 시계열자료의 불안정성(nonstationary) 등으로 인하여 잘못 추정될 가능성이 있어 면밀한 검토와 분석 후 사용하여야 한다. 시계열자료의 불안정성으로 말미암아 야기되는 문제점들을 개선할 수 있는 모형으로서 VECM과 VAR모형이 널리 이용되고 있다. 따라서 본 연구는 VECM과 VAR모형을 사용하여 추정된 헤지비율과 전통적 회귀분석모형을 사용하여 추정한 헤지비율을 비교하여 어떤 모형으로 추정한 헤지비율이 더 정확한지를 평가하는데 목적을 두고 있다. 즉, 본 연구는 KTB 현 선물의 헤징에 대한 연구로 2000년 1월 4일부터 2001년 7월 27일까지 385일간의 KTB 현 선물 자료와 불룸버그 국채지수를 대상으로 VECM 및 VAR모형과 전통적 회귀분석모형에 의한 헤지비율을 추정하고 각 모형의 설명력과 예측력을 비교하고자 한다. 이 연구의 실증분석 결과, KTB 현물가격과 KTB 선물가격간, 블룸버그 국채지수와 KTB 선물가격간에는 공적분 관계가 존재하며, VECM 및 VAR와 전통적 회귀분석모형을 이용하여 추정한 최적헤지비율의 크기는 대동소이(大同小異)하며, 전통적 회귀분석방법을 이용하는 것이 VECM과 VAR모형을 이용할 때 보다 설명력과 예측력이 우월한 것으로 나타났다.

  • PDF