• 제목/요약/키워드: Vascular Contractility

검색결과 85건 처리시간 0.019초

가토 대동맥 평활근에서 인삼 알콜 추출물에 의한 Calcium 동원에 관한 연구 (A Study on the Mobilization of Calcium by Ginseng Alcohol Extract in Rabbit Vascular Smooth Muscle)

  • 김용배;이영호;강복순;강두희
    • The Korean Journal of Physiology
    • /
    • 제24권1호
    • /
    • pp.77-90
    • /
    • 1990
  • There have been conflicting reports concerning the effect of Panax ginseng on the contractility of vascular smooth muscle, i.e., Panax ginseng extract has been reported to cause relaxation, contraction or to have no effect on the tension of vascular smooth muscle. A further investigation of $Ca^{++}$ stores which supply $Ca^{++}$ for contraction of vascular smooth muscle is needed to understand the underlying mechanisms of this conflicting effect of ginseng alcohol extract (GAE). The present study was intended to examine the sources of calcium mobilized for contraction of vascular smooth muscle by GAE. Aortic ring preparations were made from the rabbit thoracic aorta and endothelial cells were removed from the ring. The contractility of the aortic ring was measured under various experimental conditions and $Ca^{++}$ flux across the membrane of aortic ring and the sarcoplasmic reticulum and mitochondria were measured with a calcium selective electrode. The result were summarized as follows; 1) At low concentration of extracellular $Ca^{++}$, GAE increased the contractility of vascular smooth muscle in dose-dependent fashion except high concentration $Ca^{++}$ (1 mM). 2) In the presence of ryanodine, GAE still increased contractility of vascular smooth muscle as much as control group, but in the presence of caffeine, GAE increased it significantly. i.e. Their effects seemed to be additive. 3) In the presence of verapamil+lanthanum, and verapamil+lanthanum+ryanodine, the contractility of the vascular smooth muscle was decreased, but a dose dependent increase in vascular tension was still demonstrated by GAE although total tension was low. 4) GAE increased $Ca^{++}$ efflux from vascular smooth muscle cells, but have no effect on $Ca^{++}$ influx. 5) GAE increased $Ca^{++}$ efflux from sarcoplasmic reticulum and mitochondria vesicles. From the above results, it may be concluded that GAE increased the release of $Ca^{++}$ from sarcoplasmic reticulum, mitochondria or other intracellular $Ca^{++}$ stores of vascular smooth muscle, but it does not increase $Ca^{++}$ influx across the plasma membrane.

  • PDF

Effect of Heme Oxygenase Induction by NO Donor on the Aortic Contractility

  • Kim, Chang-Kyun;Sohn, Uy-Dong;Lee, Seok-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권1호
    • /
    • pp.87-92
    • /
    • 2001
  • Carbon monoxide (CO) binds to soluble guanylate cyclase to lead its activation and elicits smooth muscle relaxation. The vascular tissues have a high capacity to produce CO, since heme oxygenase-2 (HO-2) is constitutively expressed in endothelial and smooth muscle cells, and HO-1 can be greatly up-regulated by oxidative stress. Moreover, the substrate of HO, heme, is readily available for catalysis in vascular tissue. Although the activation of heme oxygenase pathway under various stress conditions may provide a defence mechanism in compromised tissues, the specific role of HO-1-derived CO in the control of aortic contractility still remains to be elucidated. The present study was done to determine the effect of HO-1 induction on the aortic contractility. Thus, the effects of incubation of aortic tissue with S-nitroso-N-acetylpenicillamine (SNAP) for 1 hr on the aortic contractile response to phenylephrine were studied. The preincubation with SNAP resulted in depression of the vasoconstrictor response to phenylephrine. This effect was restored by HO inhibitor or methylene blue but not by NOS inhibitor. The attenuation of vascular reactivity by preincubation with SNAP was also revealed in endothelium-free rings. $AlF4^--evoked$ contraction in control did not differ from that in SNP-treated group. These results suggest that increased production of CO was responsible for the reduction of the contractile response to phenylephrine in aortic ring preincubated with SNAP and this effect of SNAP was independent on endothelium.

  • PDF

엉겅퀴 유래 Silymarin의 단독 및 알코올 병용 시 혈압 조절 효과 (The Effect of Silymarin and Ethanol Intake on Vascular Contractility)

  • 제현동;민영실
    • 산업융합연구
    • /
    • 제20권7호
    • /
    • pp.131-137
    • /
    • 2022
  • 역학 조사에서 알코올 섭취와 고혈압 증가 사이에 인과관계가 있어서 이번 연구에서 엉겅퀴 유래 silymarin의 단독 및 알코올 병용 투여에서 혈관수축 억제능을 관찰하였고 아직 불분명한 수축성 조절 기전에 대해 효능제 선택적 조절 가설을 수립하여 조사하였다. 내피가 손상된 혈관이 수조 내 현수되었고 혈관에 의한 기계적 신호가 등장력 변환기에서 전기적 신호로 변환되어 생리측정기에 표시되었다. 저농도의 ethanol과 silymarin은 혈관 내피에서 산화질소 생성 작용 외에 평활근에 대한 직접 작용으로 동맥의 수축성을 감소시킬 것으로 추측되었는데 인위적으로 내피가 손상된 동맥에서 ethanol과 병용된 silymarin이 silymarin 단독에 비해 굵은 미세섬유성 조절성 수축약 (fluoride, thromboxane mimetic)에 의한 혈관 수축 억제에 차이가 없었고 silymarin 단독에 비해 가는 미세섬유성 조절성 phorbol ester에 의한 혈관 수축억제에 차이가 없었다. 따라서 silymarin 단독은 내피 의존성 산화질소 생성과 내피에 비의존적으로 평활근에서 주로 ROCK 활성 감소에 참여하여 결과적으로 평활근에서 악틴-미오신 상호작용을 억제하여 혈관을 이완시키고 ethanol은 내피 의존성 산화질소 생성 외에 평활근에 대한 작용이 없는 것으로 생각된다.

흰쥐 적출대동맥의 수축력에 미치는 열과 Nacl의 영향

  • 박태규;김종일;성유진;김인겸;김중영
    • 한국환경생물학회:학술대회논문집
    • /
    • 한국환경생물학회 2003년도 학술대회
    • /
    • pp.86-91
    • /
    • 2003
  • In this study, in order to examine whether salt and heat shock stress would alter or not contraction and relaxation of isolated rat aorta. Under anesthesia with sodium pentobarbital(50 mg Kg$^{-1}$ i.p.), male Sprague Dawley rats weighing 300-330 g were subjected to 0, heat shock combined salt stress, where as the sham group was left at modified Krebs-bicarbonate solution. To measure contractile response of vascular ring preparation isolated from rat was determined in organ bath and was recorded on physiograph connected to isometric transducer. And the strip was checked for expression of heat shock protein(Hsps) by means of western blotting. The combination group of heat and 50 mM NaCl group increased vascular contractility, and the heat and 150 mM NaCl group decreased vascular contractility for 5 hours, and then recovered for 8 hours compared to that of control. Expressin of Hsp 70 of vascular muscle of rat aorta more increased by combination of heat and NaCl treatment than those of single treatment of heat or NaCl treatment, and vascular Hsp 70 showed a little decrease at 8 hours compared at 5 hours. These result indicate that mixed environmental stress either increased or decreased in vascular contractility by combination of heat and NaCl concentration.

  • PDF

Salt 스트레스에 의한 흰쥐 적출대동맥의 수축력 변화양상 (Changes of Vascular Contractility of isolated Rat Aorta treated with Salt Stress)

  • 김종일;박태규;김중영
    • 한국환경과학회지
    • /
    • 제12권10호
    • /
    • pp.1131-1136
    • /
    • 2003
  • To examine whether salt stress would alter or not contractility of isolated rat aorta, under anesthesia with sodium pentobarbital(50 mg kg-1 i.p.), male Sprague Dawley rats(300-330 g) were subjected to 0, 50, and 150 mM of sodium chloride at 37$^{\circ}C$ for 60 min. where as the sham group was left at modified Krebs-bicarbonate solution. To measure contractile response of vascular ring preparation isolated from rat was determined in organ bath and was recorded on physiograph connected to isometric transducer. And the strip was checked for expression of heat shock protein(Hsp) by Western blotting. One, three and eight hours later, we measured vascular contractility of isolated rat aorta treated with KCI, phenylephrine from organ bath study. The dose-vascular responses of potassium chloride and phenylephrine showed a little augmentation by NaCl concentration in the strips exposed to NaCl for 8 hours. And the response of relaxation induced by nitroprusside and acetylcholine was not influenced by NaCl stress in isolated aorta ring for 8 hours, respectively. Expression pattern of Hsp 70 of vascular muscle in isolated rat aorta showed a little increase in 150 mM NaCl group at 8 hours after NaCl treatment but not at 3 hours, and Hsp 60 expression of rat aorta was markedly increased in 50 mM NaCl group at 8 hours after NaCl treatment. Taken together, NaCl induced dose-and time dependent accumulation of the Hsp but not affected contraction of rat aorta. These data suggest that short term high salt stress was not sufficient to induce hypertension of rat aorta.

High fat diet confers vascular hyper-contractility against angiotensin II through upregulation of MLCK and CPI-17

  • Kim, Jee In
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권1호
    • /
    • pp.99-106
    • /
    • 2017
  • Obesity is a critical risk factor for the hypertension. Although angiotensin II (Ang II) in obese individuals is known to be upregulated in obesity-induced hypertension, direct evidence that explains the underlying mechanism for increased vascular tone and consequent increase in blood pressure (BP) is largely unknown. The purpose of this study is to investigate the novel mechanism underlying Ang II-induced hyper-contractility and hypertension in obese rats. Eight-week old male Sprague-Dawley rats were fed with 60% fat diet or normal diet for 4 months. Body weight, plasma lipid profile, plasma Ang II level, BP, Ang II-induced vascular contraction, and expression of regulatory proteins modulating vascular contraction with/without Ang II stimulation were measured. As a result, high fat diet (HFD) accelerated age-dependent body weight gaining along with increased plasma Ang II concentration. It also increased BP and Ang II-induced aortic contraction. Basal expression of p-CPI-17 and myosin light chain (MLC) kinase was increased by HFD along with increased phosphorylation of MLC. Ang II-induced phosphorylation of CPI-17 and MLC were also higher in HFD group than control group. In conclusion HFD-induced hypertension is through at least in part by increased vascular contractility via increased expression and activation of contractile proteins and subsequent MLC phosphorylation induced by increased Ang II.

The Inhibitory Effect of Eupatilin on the Agonist-Induced Regulation of Vascular Contractility

  • Je, Hyun Dong;Kim, Hyeong-Dong;Jeong, Ji Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권1호
    • /
    • pp.31-36
    • /
    • 2013
  • The present study was undertaken to investigate the influence of eupatilin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Eupatilin more significantly relaxed fluoride-induced vascular contraction than thromboxane $A_2$ or phorbol ester-induced contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, eupatilin significantly inhibited fluoride-induced increases in pMYPT1 levels. On the other hand, it didn't significantly inhibit phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the primarily inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1. This study provides evidence regarding the mechanism underlying the relaxation effect of eupatilin on agonist-induced vascular contraction regardless of endothelial function.

Cardamonin inhibits agonist-induced vascular contractility via Rho-kinase and MEK inhibition

  • Je, Hyun Dong;Jeong, Ji Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권1호
    • /
    • pp.69-74
    • /
    • 2016
  • The present study was undertaken to investigate the influence of cardamonin on vascular smooth muscle contractility and to determine the mechanism(s) involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Cardamonin significantly relaxed fluoride-, phenylephrine-, and phorbol ester-induced vascular contractions, suggesting that it has an anti-hypertensive effect on agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, cardamonin significantly inhibited the fluoride-induced increase in pMYPT1 level and phenylephrine-induced increase in pERK1/2 level, suggesting inhibition of Rho-kinase and MEK activity and subsequent phosphorylation of MYPT1 and ERK1/2. This study provides evidence that the relaxing effect of cardamonin on agonist-induced vascular contraction regardless of endothelial function involves inhibition of Rho-kinase and MEK activity.

참마 유래 Diosgenin의 혈관 수축성 조절 효과 (The Effect of Dioscorea villosa Derived-diosgenin on Vascular Contractility)

  • 제현동
    • 약학회지
    • /
    • 제58권5호
    • /
    • pp.337-342
    • /
    • 2014
  • The present study was undertaken to investigate the influence of diosgenin on vascular smooth muscle contractility and to determine the mechanism involved. We hypothesized that diosgenin, the primary ingredient of Dioscorea villosa, plays a role in vascular relaxation through inhibition of Rho-kinase in rat aortae. Denuded arterial rings from male Sprague-Dawley rats were used and isometric tensions were recorded using a computerized data acquisition system. Interestingly, diosgenin inhibited fluoride-induced contraction but didn't inhibit phorbol ester-induced contraction suggesting that additional pathways different from endothelial nitric oxide synthesis such as inhibition of Rho-kinase might be involved in the vasorelaxation. Furthermore, diosgenin didn't inhibit thromboxane $A_2$-induced increases in pERK1/2 levels suggesting the mechanism excluding inhibition of thromboxane $A_2$-induced increases in ERK1/2 phosphorylation. This study provides evidence that diosgenin induces vascular relaxation through inhibition of Rho-kinase in rat aortae.

혈관 수축성에 대한 phenylephrine, isoprenaline 및 prazosin의 융합성 조절 효과 (The convergence effect of phenylephrine, isoprenaline and prazosin on vascular contractility)

  • 제현동;민영실
    • 융합정보논문지
    • /
    • 제12권4호
    • /
    • pp.119-125
    • /
    • 2022
  • 심혈관계 활성이 예측되는 phenylephrine, isoprenaline, prazosin의 단독 및 병용 투여에서 혈관수축 억제능을 관찰하였고 아직 보고가 빈약한 수축성 조절 기전에 대해 조직 선택적 조절 가설을 세워서 조사하였다. 내피가 손상된 혈관을 수조내에 현수시켰고 혈관에 의한 기계적 신호가 등장력 변환기에서 전기적 신호로 변환되어 생리측정기에 표시되었다. 내피가 손상된 혈관에서 phenylephrine은 조직에 비선택적으로 지속적인 수축을 유지하였고 phenylephrine과 병용된 isoprenaline은 등척성 수축 실험에서 흉부, 복부 대동맥 등 조직에 비선택적으로 평활근에 대한 직접 작용으로 수축성을 일시적으로 감소시켰고 phenylephrine과 병용된 prazosin은 조직에 비선택적으로 평활근에 대한 직접 작용으로 수축성을 지속적으로 감소시켰다. 따라서 일부 조직에서 adrenergic beta receptor 밀도가 감소되거나 수용체 결합력이 감소되거나 수용체 결합 후 신호전달이 감소되거나 약물의 분포가 감소되어 isoprenaline이 phenylephrine의 지속적 작용에 대해 일시적으로 억제하고 prazosin이 지속적으로 억제하는 것으로 생각된다.