• Title/Summary/Keyword: Varshni coefficient

Search Result 4, Processing Time 0.017 seconds

A Study of Characteristics of lnxGa1-xP by Photoreflectance measurement (Photoreflectance 측정에 의한 InxGa1-xP의 특성 연구)

  • Kim D. L.;Yu J. I.
    • Laser Solutions
    • /
    • v.8 no.3
    • /
    • pp.5-10
    • /
    • 2005
  • [ $InxGa_{1-x}P/GaAs$ ] structures were grown by chemical beam epitaxy(CBE), Pure phosphine($PH_3$) gases were used as group V sources. for the group III sources, TEGa, TmIn were used. $InxGa_{1-x}P$ epilayer was grown on SI-GaAs substrate and has a 1-${\mu}m$ thick. We have investigated the characteristics of $InxGa_{1-x}P$ by the photoreflectance(PR) spectroscopy, The PR spectrum of $InxGa_{1-x}P$ shows third-derivative feature whose Peaks Provide energy gap. The energy gap of $InxGa_{1-x}P$ has deduced composition x. From temperature dependance of PR spectra, temperature coefficient is $dEg/dT=-3.773{\times}10^{-4}$ eV/K, and Varshni coefficients $\alpha$ and $\beta$ values obtained $4{\times}10^4$ eV/K and 267 K respectively. Also, interaction $\alpha$B was 19.4 meV using the Bose-Einstein temperature relation, and $\Theta$ value related the average phonon frequency were 101.4 K. In particular, shoulder peak related to defects observed in PR signal that measured in temperature 82 K.

  • PDF

A study on photoreflectance in Fe-doped semi-insulating InP (Fe가 첨가된 반절연성 InP에서 Photoreflectance에 관한 연구)

  • 김인수;이정열;배인호
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.249-254
    • /
    • 1997
  • We investigated characteristics of Fe-doped semi-insulating InP by means of photoreflectance(PR) measurement. The band gap energy($E_0$) and broadening parameter($\Gamma$) from PR signals at 300K are 1.336 eV and 11.2 meV, respectively. As the temperature is decreased from 300 to 80 K, PR signals are varied from an overlapped shape of exciton and 2-dimensional band gap transitions(300 K) to that of exciton transition(80 K). We calculated Varshni coefficient($\alpha=0.94\pm$0.07 meV/K, $\beta=587\pm$35.2 K) and Bose-Einstein coefficient ($a_B=33.6{\pm}2.02meV$ , $\theta=165\pm$33K). After annealing of isothermal and isochronism crystallinity of InP is found to be excellent when annealed at $300^{\circ}C$ for 10~20 min, qualitatively.

  • PDF

Hydrothermal Growth and Characteristics of ZnO Nanorods on R-plane Sapphire Substrates

  • Kim, Min-Su;Kim, So-A-Ram;Nam, Gi-Ung;Park, Hyeong-Gil;Yun, Hyeon-Sik;Im, Jae-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.236-237
    • /
    • 2012
  • ZnO nanorods were grown on R-plane sapphire substrates with the seed layers annealed at different temperature. The effects of annealing temperature for the seed layers on the properties of the ZnO nanorods were investigated by scanning electron microscopy, X-ray diffraction, UV-visible spectroscopy, and photoluminescence. For the as-prepared seed layers, the ZnO nanorods and the ZnO nanosheets were observed. Only the ZnO nanorods were grown as the annealing temperature was above $700^{\circ}C$. The optical transmittance in the UV region was almost zero while that in the visible region was gradually increased as the annealing temperature increased to $700^{\circ}C$. The optical band gap of the ZnO nanorods was increased as the annealing temperature increased to $700^{\circ}C$. In the visible region, the refractive index was decreased with increasing the wavelength, and the extinction coefficient was decreased as the annealing temperature increased to $700^{\circ}C$. The non-linear exciton radiative life time of the FX emission peak was established by cubic equation. The values of Varshni's empirical equation fitting parameters were ${\alpha}=4{\times}10^{-3}eV/K$, ${\beta}=1{\times}10^4K$, and $E_g(0)=3.335eV$ and the activation energy was found to be about 94.6 meV.

  • PDF

A study on the Properties of $In_{l-x}Ga_{x}As$ Grown by the TGS Methods (TGS법으로 성장한 $In_{l-x}Ga_{x}As$의 특성에 관한 연구)

  • Lee, W.S.;Moon, D.C.;Kim, S.T.;Suh, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.372-375
    • /
    • 1988
  • The III-V ternary alloy semiconductor $In_{l-x}Ga_{x}As$ were grown by the temperature Gradient of $0.60{\leq}x{\leq}0.98$. The electrical properties were investigated by the Hall effect measurement with the Van der Pauw method in the temperature range of $90{\sim}300K$. $In_{l-x}Ga_{x}As$ were revealed n-type and the carrier concentration at 300K were in the range of $9.69{\times}10^{16}cm^{-3}{\sim}7.49{\times}10^{17}cm^{-3}$. The resistivity was increased and the carrier mobility was decreased with increasing the composition ratio. The optical energy gap determined by optical transmission were $20{\sim}30meV$ lower than theoretical valves on the basis of absorption in the conduction band tail and it was decreased with increasing the temperature by the Varshni rule. In the photoluminescence of undoped $In_{l-x}Ga_{x}As$ at 20K, the main emission was revealed by the radiative recombination of shallow donor(Si) to acceptor(Zn) and the peak energy was increased with increasing the composition, X. The diffusion depth of Zn increases proportionally with the square root of diffusion time, and the activation energy for the Zn diffusion into $In_{0.10}Ga_{0.90}As$ was 2.174eV and temperatures dependence of diffusion coefficient was D = 87.29 exp(-2.174/$K_{B}T$). The Zn diffusion p-n $In_{x}Ga_{x}As$ diode revealed the good rectfying characteristics and the diode factor $\beta{\approx}2$. The electroluminescence spectrum for the Zn-diffusion p-n $In_{0.10}Ga_{0.90}As$ diode was due to radiative recombation between the selectron trap level(${\sim}140meV$) and Zn acceptor level(${\sim}30meV$). The peak energy and FWHM of electroluminescence spectrum at 77K were 1.262eV and 81.0meV, respectively.

  • PDF