• Title/Summary/Keyword: Various starting materials

Search Result 197, Processing Time 0.029 seconds

Synthesis of Cathode Materials LiNi1-yCoyO2 from Various Starting Materials and their Electrochemical Properties

  • Song, Myoung-Youp;Rim, Ho;Bang, Eui-Yong;Kang, Seong-Gu;Chang, Soon-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.507-512
    • /
    • 2003
  • The LiN $i_{l-y}$ $Co_{y}$ $O_2$ samples were synthesized at 80$0^{\circ}C$ and 85$0^{\circ}C$, by the solid-state reaction method, from the various starting materials LiOH, L $i_2$C $O_3$, NiO, NiC $O_3$, $Co_3$ $O_4$, CoC $O_3$, and their electrochemical properties are investigated. The LiN $i_{l-y}$ $Co_{y}$ $O_2$ pre-pared from L $i_2$C $O_3$, NiO, and $Co_3$ $O_4$ exhibited the $\alpha$-NaFe $O_2$ structure of the rhombohedral system (space group; R3m). As the Co content increased, the lattice parameters a and c decreased. The reason is that the radius of Co ion is smaller than that of Ni ion. The increase in da shows that two-dimensional structure develops better as the Co content increases. The LiN $i_{0.7}$ $Co_{03}$. $O_2$[HOO(800,0.3)] synthesized at 80$0^{\circ}C$from LiOH, NiO, and $Co_3$ $O_4$ exhibited the largest first discharge capacity 162 mAh/g. The size of particles increases roughly as the valve of y increases. The samples with the larger particles have the larger first discharge capacities. The cycling performances of the samples with the first discharge capacity larger than 150 mAh/g were investigated. The LiN $i_{0.9}$ $Co_{0.1}$ $O_2$[COO(850,0.1)] synthesized at 85$0^{\circ}C$ from L $i_2$C $O_3$, NiO, and $Co_3$ $O_4$ showed an excellent cycling performance. The sample with the larger first discharge capacity will be under the more severe lattice destruction, due to the expansion and contraction of the lattice during intercalation and deintercalation, than the sample with the smaller first discharge capacity. As the first discharge capacity increases, the capacity fading rate thus increases.increases.s.s.s.

Ammonia Adsorption of Activated Carbons Synthesized from Polymeric Precursor (고분자 전구체로부터 합성된 활성탄소를 이용한 암모니아 흡착)

  • Jung, Woo-Young;Park, Soo-Jin;Pak, Pyong-Ki
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.311-312
    • /
    • 2003
  • Activated carbons (ACs) are widely used in adsorption for the removal of gaseous and aqueous pollutants[1]. Although a wide range of carbonaceous materials can be converted into ACs, the coal and lingocellulosic materials are the most commonly used starting materials for the production of commercial ACs. Recently, there are a quite large number of studies regarding the preparation of ACs from various polymeric materials because of high carbon yield and low ash content In this work, ACs are prepared from polystyrene (PS) by chemical activation with potassium hydroxide and the effect of the KOH-to-PS ratio to adsorption of ammonia is investigated. (omitted)

  • PDF

Review on Functionalization of Laser-Induced Graphene

  • Jin Woo An;Hee Jae Kim;Seoung-Ki Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.203-213
    • /
    • 2023
  • Owing to carbon materials' diverse functionalization and versatility, the design and synthesis of carbon-based three-dimensional porous structures have become important foundational research topics across various fields. Among the various methods for producing porous carbon structures, laser-induced graphene (LIG) has garnered attention because of its large surface area, controllable structure, excellent electrical conductivity, scalability, and eco-friendly synthesis process. In addition, recent research results have reported more novel functionalities by advancing further from the unique characteristics of LIG through functionalization or compounding of LIG, making it an attractive material for various applications in electronic devices, sensing, catalysis, and energy storage. This review aims to update the research trends in LIG and its functionalization, providing insights to inspire more interesting studies on functional LIG to expand its potential applications ultimately. Starting with the synthesis method and material characteristics of LIG, we introduce the functionalization of LIG, which is classified into surface modification, heteroatom doping, and hybridization based on the interaction mechanism. Finally, we summarize and discuss the prospects of LIG and its functionalization.

A study on the characteristics of eological lightweight aggregates containing reject ash from the power plant (화력발전소 잔사회 입도에 따른 에코인공골재의 특성에 관한 연구)

  • Kim, Yoo-Taek;Ryu, Yu-Gwang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.4
    • /
    • pp.185-191
    • /
    • 2010
  • To effectively utilize resources of reject ash and dredged soil, globular shape-formed artificial lightweight aggregate were manufactured in 8~10 mm size. Starting materials were changed various grading and composition, sintered at $1050{\sim}1250^{\circ}C$. The specific gravity, water absorptance of artificial lightweight aggregates were measured on the basis of the KS. In this study could make a prediction about application of bloating mechanism by ferrous materials and alkali/alkali-earth oxide at high temperature.

Effect of Stewartia koreana Boiling Extract (SKBE) on Osteoarthritis and Purification of Spinasterol From SKBE

  • Sang Min Lee;Hye Jin Moon;Hong Joon Yoon;Chun soo Na;Jin beom Kim;Dae Seung Na;Tae Hoon Lee;Hakwon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.2
    • /
    • pp.129-136
    • /
    • 2023
  • Osteoarthritis is to the abnormality of the inflammatory response of joint tissue caused by various causes such as aging, and muscle loss. In this study, the activity in joint inflammation was verified using SKBE, a plant extract, and the expression levels of arthritis-inducing proteins including MMP-1, MMP-3, MMP-13, and collagen type II in vitro were compared and analyzed. Furthermore, we synthesized α-spinasterol, an active ingredient of SKBE, by the previously reported synthesis method and these findings could provide a new starting point for the development of treatments for osteoarthritis.

Improving of Starting and Low Speed Performance of PMAC with Linear Encoder

  • Lee, Dong-Hee;Lee, Hwa-Seok;Park, Sung-Jun;Lee, Yang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.99.4-99
    • /
    • 2001
  • PMAC(Permanent magnet AC) motor drives are widely used in the industrial applications and home appliances because of high torque ratio, high efficiency and precise control performance. In recent years there has been a significant development of PMAC motors of various kinds. Improvements in the properties of permanent magnet materials have increased the viability of related types of motors. However, precise speed and position information is essential for the good control performance. In order to produce correct torque, the rotor flux position information from position sensor has to be identified. In this paper, a low cost position sensor is proposed for improving of starting and low speed performance of PMAC. The proposed position ...

  • PDF

Effect of Small Surface Defects in the Starting Material on Product Quality after Drawing (원소재의 미소 표면결함이 인발공정에 미치는 영향)

  • Nam, C.H.;Lee, I.K.;Lee, J.K.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.23 no.3
    • /
    • pp.159-163
    • /
    • 2014
  • In the current study, the effect of small surface defects in the starting material including roughness, indentations, or scratches, which are perpendicular to the direction of drawing, on the product quality is investigated using the finite element method. An axisymmetric defect is assumed. Such defects are defined by a cylindrical defect area and two tapered regions connecting the defect area to the non-defective area of the material. Various conditions for these initial surface defects are considered, including defect depth, defect slope and defect length. To describe the plastic deformation of the defect in detail during the simulation, local remeshing is applied. Based on the finite element results, defect disappearance maps were generated. It was found that defect disappearance is significantly dependent on the defect depth and the defect length coupled with the defect slope.

Full composites hydrogen fuel cells unmanned aerial vehicle with telescopic boom

  • Carrera, E.;Verrastro, M.;Boretti, Alberto
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.1
    • /
    • pp.17-37
    • /
    • 2022
  • This paper discusses an improved unmanned aerial vehicle, UAV, configuration characterized by telescopic booms to optimize the flight mechanics and fuel consumption of the aircraft at various loading/flight conditions.The starting point consists of a full-composite smaller UAV which was derived by a general aviation ultralight motorized aircraft ULM. The present design, named ToBoFlex, extends the two-booms configuration to a three tons aircraft. To adapt the design to needs relevant to different applications, new solutions were proposed in aerodynamic fields and materials and structural areas. Different structural solutions were reported. To optimize aircraft endurance, the innovative concept of Telescopic Tail Boom was considered along with two different tails architecture. A new structural configuration of the fuselage was proposed. Further consideration of hydrogen fuel cell electric propulsion is now being studied in collaboration between the Polytechnic of Turin and Prince Mohammad Bin Fahd University which could be the starting point of future investigations.

Microstructure and Mechanical Properties of β-SiAlON Ceramics Fabricated Using Self-Propagating High-Temperature Synthesized β-SiAlON Powder

  • Kim, Min-Sung;Go, Shin-Il;Kim, Jin-Myung;Park, Young-Jo;Kim, Ha-Neul;Ko, Jae-Woong;Yun, Jon-Do
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.292-297
    • /
    • 2017
  • ${\beta}-SiAlON$, based on its high fracture toughness, good strength and low abrasion resistance, has been adopted in several industrial fields such as bearings, turbine blades and non-ferrous metal refractories. In general, ${\beta}-SiAlON$ is fabricated by reactive sintering using expensive $Si_3N_4$ and AlN as starting materials. On the other hand, in this study, a cheaper ${\beta}-SiAlON$ starting powder synthesized by SHS was employed to improve price competitiveness compared to that of the reactive sintering process. ${\beta}-SiAlON$ ceramics with various content of the sintering additive $Y_2O_3$ up to 7 wt% were fabricated by conventional pressureless sintering at $1800^{\circ}C$ for 2 to 8 h under $N_2$ pressure of 0.1 MPa. The specimen with 3 wt% $Y_2O_3$ exhibited the best mechanical properties: hardness of 14 GPa, biaxial strength of 830 MPa, fracture toughness of $5MPa{\cdot}m^{1/2}$ and wear rate of about $3{\times}10^{-6}mm^3/N{\cdot}m$.

Thick Film Type duster in Mg2SiO4/Glass composite ceramics for Anion Generation (Mg2SiO4/Glass Composite계 세라믹스를 이용한 음이온 발생용 후막형 클러스터)

  • Yeo, Dong-Hun;Shin, Hyo-Soon;Hong, Youn-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.118-123
    • /
    • 2010
  • The eco-friendly technologies have been extended as matter of international concern due to various diseases and syndromes according to an environmental pollution. In this study, we have manufactured a ceramic cluster with thick film type for anion generation equipment which is maximized anion but minimized ozone contents generated. To develop the formulation of ceramic cluster, we conducted the $Mg_2SiO_4$ powders doped with 10 vol% glass frits as Na-Zn-B-O system and sintered at $1050^{\circ}C$ for 2 hours in air for starting materials and investigated the matching properties between the Ag-Pd electrode and the starting materials. The sintered sample for the composition of cluster has 6.7 of dielectric constant and 32 kV/mm of withstand voltage. The yield of anions was measured according to an electrode pattering, discharge gap between electrode, and thickness of electrode protective layer in the cluster of thick film type. We have manufactured the ceramic clusters with optimized thick film structure that have an anion over a hundred particles and the ozone of 0.6 ppb generated.