• Title/Summary/Keyword: Various proportions of soil ginseng growth

Search Result 1, Processing Time 0.018 seconds

ICT-Based Ginseng Process Ginseng Plant Composition Analysis (ICT 기반의 인삼 공정 육묘 시 인삼 식물체 분석)

  • Kim, D.H.;Kim, Y.B.;Koo, H.J.;Baek, H.J.;Lee, S.B.;Hong, E.K.;Kim, S.K.;Chang, K.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.2
    • /
    • pp.63-70
    • /
    • 2021
  • In order to compare and investigate the growth rates of each of the various soils, the soil mixing ratios were varied to four soils (Pitmos, Pearlite, Masato, General Soil, and Cocopeat). Ten were selected for each soil ratio and the average length and weight were compared. As a result, in the ratio of No. 1 pitmos 6.5: Perlite 2: Masato 1.5, it was measured as 16.36cm, 0.60g. In the ratio of No. 2 pitmos 10, 13.74cm, 0.41g. In the ratio of No. 3 general clay 10, it was measured as 12.43cm, 0.26g. 4 general clay 8, 0.39g. The growth rate of each soil was measured to be superior to that of other soil growth environments in the ratio of pitmos 6.5: pearlite 2: masato 1.5 soil. For ginseng plant analysis, 30 ginseng plants grown in the average length and weight of each soil at a ratio of 6.5: pearlite 2: masato 1.5 and relatively low-result general soil were selected and analyzed. As a result, 1,040ppm of nitrite nitrogen(NO3-N) was higher in ginseng plants grown in general soil. There was no significant difference in phosphoric acid(P), potassium(K), and magnesium(Mg). Ginseng is characterized by poor growth when it exceeds 300ppm by combining ammonia tae (NH4-N) and nitrate tae (NO3-N) nitrogen. In addition, nitric acid produced in a part of this nitrite makes the pH reaction of the soil acidic, and the nitrite remaining in the soil evaporates into gas.