• Title/Summary/Keyword: Various CM Applications

Search Result 184, Processing Time 0.026 seconds

An Improvement for Location Accuracy Algorithm of Moving Indoor Objects (실내 이동 객체의 위치 정확도 개선을 위한 알고리즘)

  • Kim, Mi-Kyeong;Jeon, Hyeon-Sig;Yeom, Jin-Young;Park, Hyun-Ju
    • Journal of Internet Computing and Services
    • /
    • v.11 no.2
    • /
    • pp.61-72
    • /
    • 2010
  • This paper addresses the problem of moving object localization using Ultra-Wide-Band(UWB) range measurement and the method of location accuracy improvement of the indoor moving object. Unlike outdoor environment, it is difficult to track moving object position due to various noises in indoor. UWB is a radio technology that has attention for localization applications recently. UWB's ranging technique offer the cm accuracy. Its capabilities for data transmission, range accurate estimation and material penetration are suitable technology for indoor positioning application. This paper propose a positioning algorithm of an moving object using UWB ranging technique and particle filter. Existing positioning algorithms eliminate estimation errors and bias after location estimation of mobile object. But in this paper, the proposed algorithm is that eliminate predictable UWB range distance error first and then estimate the moving object's position. This paper shows that the proposed positioning algorithm is more accurate than existing location algorithms through experiments. In this study, the position of moving object is estimated after the triangulation and eliminating the bias and the ranging error from estimation range between three fixed known anchors and a mobile object using UWB. Finally, a particle filter is used to improve on accuracy of mobile object positioning. The results of experiment show that the proposed localization scheme is more precise under the indoor.

Radiological Characterization of the High-sensitivity MOSFET Dosimeter (고감도 MOSFET 선량계 방사선학적 특성 연구)

  • Cho Sung Koo;Kim Chan-Hyeong
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.215-219
    • /
    • 2004
  • Due to their excellence for the high-energy therapy range of photon beams, researchers show increasing interest in applying MOSFET dosimeters to low- and medium-energy applications. In this energy range, however, MOSFET dosimeter is complicated by the fact that the interaction probability of photons shows significant dependence on the atomic number, Z, due to photoelectric effect. The objective of this study is to develop a very detailed 3-dimensional Monte Carlo simulation model of a MOSFET dosimeter for radiological characterizations and calibrations. The sensitive volume of the High-Sensitivity MOSFET dosimeter is very thin (1 ${\mu}{\textrm}{m}$) and the standard MCNP tallies do not accurately determine absorbed dose to the sensitive volume. Therefore, we need to score the energy deposition directly from electrons. The developed model was then used to study various radiological characteristics of the MOSFET dosimeter. the energy dependence was quantified for the energy range 15 keV to 6 MeV; finding maximum dependence of 6.6 at about 40 keV. A commercial computer code, Sabrina, was used to read the particle track information from an MCNP simulation and count the tracks of simulated electrons. The MOSFET dosimeter estimated the calibration factor by 1.16 when the dosimeter was at 15 cm depth in tissue phantom for 662 keV incident photons. Our results showed that the MOSFET dosimeter estimated by 1.11 for 1.25 MeV photons for the same condition.

  • PDF

Effects of Fruiting Productivity of Grifola frondosa Using Bottle Cultivation according to Different Substrate Composition (잎새버섯에서 배지조성이 병재배 자실체 생산성에 미치는 영향)

  • Kim, Jeong-Han;Jeon, Dae-Hoon;Kang, Young-Ju;Jeoung, Yun-Kyeoung;Lee, Yun-Hae;Chi, Jeong-Hyun
    • The Korean Journal of Mycology
    • /
    • v.44 no.3
    • /
    • pp.150-154
    • /
    • 2016
  • To determine a favorable substrate formulation for Grifola frondosa, physicochemical conditions, culture properties, and yields according to various substrate formulations were investigated. Based on these analyses, T4 (80:5:15 ratio of oak sawdust to dried bean-curd refuse to corn husk) resulted in a shorter cultivation period and higher yields (weight of fresh mushrooms harvested at maturity) than those of other treatments. The physicochemical properties of T4 were pH 5.4, 2.4% crude fat contents, 54 C/N ratio, 74.3% porosity, and 0.26 g/cm3 bulk density. These results emphasize the importance of optimal substrate development on the production efficiency of G. frondosa mushrooms and have implications for commercial applications.

Vehicle Visible Light Communication System Utilizing Optical Noise Mitigation Technology (광(光)잡음 저감 기술을 이용한 차량용 가시광 통신시스템)

  • Nam-Sun Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.413-419
    • /
    • 2023
  • Light Emitting Diodes(LEDs) are widely utilized not only in lighting but also in various applications such as mobile phones, automobiles, displays, etc. The integration of LED lighting with communication, specifically Visible Light Communication(VLC), has gained significant attention. This paper presents the direct implementation and experimentation of a Vehicle-to-Vehicle(V2V) Visible Light Communication system using commonly used red and yellow LEDs in typical vehicles. Data collected from the leading vehicle, including positional and speed information, were modulated using Non-Return-to-Zero On-Off Keying(NRZ-OOK) and transmitted through the rear lights equipped with red and yellow LEDs. A photodetector(PD) received the visible light signals, demodulated the data, and restored it. To mitigate the interference from fluorescent lights and natural light, a PD for interference removal was installed, and an interference removal device using a polarizing filter and a differential amplifier was employed. The performance of the proposed visible light communication system was analyzed in an ideal case, indoors and outdoors environments. In an outdoor setting, maintaining a distance of approximately 30[cm], and a transmission rate of 4800[bps] for inter-vehicle data transmission, the red LED exhibited a performance improvement of approximately 13.63[dB], while the yellow LED showed an improvement of about 11.9[dB].

The Effect of Mask Patterns on Microwire Formation in p-type Silicon (P-형 실리콘에서 마이크로 와이어 형성에 미치는 마스크 패턴의 영향)

  • Kim, Jae-Hyun;Kim, Kang-Pil;Lyu, Hong-Kun;Woo, Sung-Ho;Seo, Hong-Seok;Lee, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.418-418
    • /
    • 2008
  • The electrochemical etching of silicon in HF-based solutions is known to form various types of porous structures. Porous structures are generally classified into three categories according to pore sizes: micropore (below 2 nm in size), mesopore (2 ~ 50 nm), and macropore (above 50 nm). Recently, the formation of macropores has attracted increasing interest because of their promising characteristics for an wide scope of applications such as microelectromechanical systems (MEMS), chemical sensors, biotechnology, photonic crystals, and photovoltaic application. One of the promising applications of macropores is in the field of MEMS. Anisotropic etching is essential step for fabrication of MEMS. Conventional wet etching has advantages such as low processing cost and high throughput, but it is unsuitable to fabricate high-aspect-ratio structures with vertical sidewalls due to its inherent etching characteristics along certain crystal orientations. Reactive ion dry etching is another technique of anisotropic etching. This has excellent ability to fabricate high-aspect-ratio structures with vertical sidewalls and high accuracy. However, its high processing cost is one of the bottlenecks for widely successful commercialization of MEMS. In contrast, by using electrochemical etching method together with pre-patterning by lithographic step, regular macropore arrays with very high-aspect-ratio up to 250 can be obtained. The formed macropores have very smooth surface and side, unlike deep reactive ion etching where surfaces are damaged and wavy. Especially, to make vertical microwire or nanowire arrays (aspect ratio = over 1:100) on silicon wafer with top-down photolithography, it is very difficult to fabricate them with conventional dry etching. The electrochemical etching is the most proper candidate to do it. The pillar structures are demonstrated for n-type silicon and the formation mechanism is well explained, while such a experimental results are few for p-type silicon. In this report, In order to understand the roles played by the kinds of etching solution and mask patterns in the formation of microwire arrays, we have undertaken a systematic study of the solvent effects in mixtures of HF, dimethyl sulfoxide (DMSO), iso-propanol, and mixtures of HF with water on the structure formation on monocrystalline p-type silicon with a resistivity with 10 ~ 20 $\Omega{\cdot}cm$. The different morphological results are presented according to mask patterns and etching solutions.

  • PDF

Stability Assessment of FKP System by NGII using Long-term Analysis of NTRIP Correction Signal (NTRIP 보정신호 분석을 통한 국토지리정보원 FKP NRTK 시스템 안정성 평가)

  • Kim, Min-Ho;Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.4
    • /
    • pp.321-329
    • /
    • 2013
  • Despite the advantage of unlimited access, there are insufficient studies for the accuracy and stability of FKP that blocks the spread of the system for various applications. Therefore, we performed a long-term analysis from continuous real-time positioning, and investigated the error characteristics dependent on the size and the surrounding environment. The FKP shows significant changes in the positioning accuracy at different times of day, where the accuracy during daytime is worse than that of nighttime. In addition, the size and deviation of FKP correction may change with the ionospheric conditions, and high correlation between ambiguity resolution rate and the deviation of correction was observed. The receivers continuously request the correction information in order to cope with sudden variability of ionosphere. On the other hand, the correction information was not received up to an hour in case of stable ionospheric condition. It is noteworthy that the outliers of FKP are clustered in their position with some biases. Since several meters of errors can be occurred for kinematic positioning with FKP, therefore, it is necessary to make appropriate preparation for real-time applications.

Ordered Macropores Prepared in p-Type Silicon (P-형 실리콘에 형성된 정렬된 매크로 공극)

  • Kim, Jae-Hyun;Kim, Gang-Phil;Ryu, Hong-Keun;Suh, Hong-Suk;Lee, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.241-241
    • /
    • 2008
  • Macrofore formation in silicon and other semiconductors using electrochemical etching processes has been, in the last years, a subject of great attention of both theory and practice. Its first reason of concern is new areas of macropore silicone applications arising from microelectromechanical systems processing (MEMS), membrane techniques, solar cells, sensors, photonic crystals, and new technologies like a silicon-on-nothing (SON) technology. Its formation mechanism with a rich variety of controllable microstructures and their many potential applications have been studied extensively recently. Porous silicon is formed by anodic etching of crystalline silicon in hydrofluoric acid. During the etching process holes are required to enable the dissolution of the silicon anode. For p-type silicon, holes are the majority charge carriers, therefore porous silicon can be formed under the action of a positive bias on the silicon anode. For n-type silicon, holes to dissolve silicon is supplied by illuminating n-type silicon with above-band-gap light which allows sufficient generation of holes. To make a desired three-dimensional nano- or micro-structures, pre-structuring the masked surface in KOH solution to form a periodic array of etch pits before electrochemical etching. Due to enhanced electric field, the holes are efficiently collected at the pore tips for etching. The depletion of holes in the space charge region prevents silicon dissolution at the sidewalls, enabling anisotropic etching for the trenches. This is correct theoretical explanation for n-type Si etching. However, there are a few experimental repors in p-type silicon, while a number of theoretical models have been worked out to explain experimental dependence observed. To perform ordered macrofore formaion for p-type silicon, various kinds of mask patterns to make initial KOH etch pits were used. In order to understand the roles played by the kinds of etching solution in the formation of pillar arrays, we have undertaken a systematic study of the solvent effects in mixtures of HF, N-dimethylformamide (DMF), iso-propanol, and mixtures of HF with water on the macrofore structure formation on monocrystalline p-type silicon with a resistivity varying between 10 ~ 0.01 $\Omega$ cm. The etching solution including the iso-propanol produced a best three dimensional pillar structures. The experimental results are discussed on the base of Lehmann's comprehensive model based on SCR width.

  • PDF

Studies on the fabrication and properties of $La_ 0.7Sr_0.3MnO_3$cathode contact prepared by glycine-nitrate process and solid state reaction method for the high efficient solid oxide fuel cells applications 0.3/Mn $O_{3}$ (고효율 고체산화물 연료전지 개발을 위한 자발 착화 연소 합성법과 고상반응법에 의한 $La_ 0.7Sr_0.3MnO_3$ 양극재료 제조 및 물성에 관한 연구)

  • Shin, Woong-Shun;Park, In-Sik;Kim, Sun-Jae;Park, Sung
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.141-149
    • /
    • 1997
  • L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ powders were prepared by both GNP(Glycine-Nitrate Process) and solid state reaction method in various of calcination temperature(800-1000.deg. C) and time in air. Also, L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ cathode contacts on YSZ(Yttria-Stabilized Zirconia) substrate were prepared by screen printing and sintering method as a function of sintering temperature(1100-1450.deg. C) in air. Sintering behaviors have been investigated by SEM(Scanning Electron Microscope) and porosity measurement. Compositional and structural characterization were carried out by X-ray diffractometer and ICP AES(Inductively Coupled Plasma-Atomic Emission Spectrometry) analysis. Electrical characterization was carried out by the electrical conductivity with linear 4 point probe method. As the calcination period increased in solid state reaction method, L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ phase increased. Although L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ single phase was obtained only for 48hrs at 1000.deg. C, in GNP method it was easy to get single and ultra-fine L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ powders with submicron particle size at 650.deg. C for 30min. The particle size and thickness of L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ cathode contact by solid state reaction method did not change during the heat treatment, while those by GNP method showed good sintering characteristics because initial powder size fabricated from GNP method is smaller than that fabricated from solid state reaction method. Based on enthalpy change from thermodynamic data and ICP-AES analysis, it was suggested to make cathode contact in composition of (L $a_{0.7}$S $r_{0.3}$)$_{0.91}$ Mn $O_{3}$ which have little second phase (L $a_{2}$Z $r_{2}$ $O_{7}$) for high efficient solid oxide fuel cells applications. As (L $a_{0.7}$S $r_{0.3}$)$_{0.91}$Mn $O_{3}$ cathode contact on YSZ substrate was sintering at 1250.deg. C the temperature that liquid phase sintering did not occur. It was possible to obtain proper cathode contacts with electrical conductivity of 150(S/cm) and porosity content of 30-40%.m) and porosity content of 30-40%.

  • PDF

Energy build-up factors estimation for BaZr0.10Ti0.90O3, Ba0.90La0.10TiO3 and Ba0.90La0.10Zr0.10Ti0.90O3 ceramics in shielding applications

  • Sarabjeet Kaur;Vidushi Karol;Pankaj Kumar;Gurpreet Kaur;Prianka Sharma;Amandeep Saroa;Amrit Singh
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1822-1829
    • /
    • 2024
  • The search for materials that serve as good shields for radiation has become very important in light of the increasing exposure to ionizing radiation in various vital sectors. The aim is to search for novel materials with better radiation shielding properties that are stable, nontoxic, and abundant and environment friendly. The solidstate reaction approach has been used to synthesize a few ceramics, including BaZrXTi1-XO3, Ba1-XLaXTiO3 and Ba1-XLaXZrXTi1-XO3 (with x = 0.10) i.eBaZr0.10Ti0.90O3 (BZT), Ba0.90La0.10TiO3 (BLT), and Ba0.90La0.10Zr0.10Ti0.90O3 (BLZT). The density of the prepared samples varies from 6.3471 to 11.6003 g/cm3. The X-ray diffraction technique, shows strong peaks to confirm the crystalline structure of prepared ceramic samples. Using the G-P fitting approach, the advanced radiation shielding parameters (build-up factor) have been evaluated in the photon energy region of 1.5 keV-15 MeV. It is observed from the results that exposure buildup factor (EBF) and energy absorption buildup factor (EABF) are maximum for BLZT and has the minimum value for BZT in the entire photon energy regime. The results of this work should be useful in radiation shielding applications such as in industry, medicine, and nuclear engineering.

A Study of Power Perception between Supplier and Retail Buyer of Agricultural Products (농산물공급자와 대형소매업체 바이어간의 상호 파워 인식에 대한 연구)

  • 서성무;이은정
    • Proceedings of the Korean DIstribution Association Conference
    • /
    • 2003.02a
    • /
    • pp.123-166
    • /
    • 2003
  • Marketing channel is recognized as one of the society systems which have the character of functional organization. These organizations are related to each other for specialized and cooperative work. Channel members in distribution channel are striving to accomplish exchange through reciprocal action. Thus channel members exercise their power to take better position in exchange. There will be struggling between members about satisfaction and conflict during this power exercise. Now a days, buyers use more harsh power as large retail firms are increasing. This phenomenon is occurring in the distribution channel. However, there will be different phenomenon in case of agricultural products. Not like industrial product suppliers, agricultural product suppliers have various supply channels and many agricultural products are seasonal. It has also unstable amount supplies. There should be differentiated marketing in agricultural products. Relatively weaker powered suppliers have to strengthen comparative factors and also have to be technically specialized through assessed experience in order to establish strong product sales chain. Making a brand of agricultural product would be also a good idea to increase the product comparability. Channel members need to be recognized their specialized functions in order to make balanced distribution channel. There have to be conversion of concept of relation between suppliers and buyers from subordinate relationship to cooperative relationship.

  • PDF