• Title/Summary/Keyword: Variation of Spectral Lines

Search Result 22, Processing Time 0.02 seconds

HIGH RESOLUTION SPECTROSCOPIC STUDY OF SYMBIOTIC STAR AG DRACONIS

  • KIM, SOO HYUN;YOON, TAE SEOG;OH, HYUNG-IL
    • Publications of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.13-31
    • /
    • 2022
  • We observed the symbiotic star AG Dra for a total of 61 nights between April 2004 and December 2021 using the 1.8-m telescope and the high-resolution Echelle spectrograph BOES at the Bohyunsan Optical Astronomy Observatory and obtained 355 frames of spectroscopic data to investigate the variations in its spectral lines. Overnight short-term and long-term changes in prominent emission lines are examined. No short-term changes are found in the line profiles. However, the peak intensity of the Hα emission line exhibits very small variation. In the long-term period, many emission lines including He I λ5875, λ6678, λ7065 and Fe II λ5018 are found to vary reflecting the symbiotic outburst activities. It is noted that He II λ4686 and Raman-scattered O VI λ6830, λ7088 are exceptions, where no significant variations are discernible. One of the noticeable lines is the λ5018 line. Its appearance and disappearance pattern are different from other emission lines, and the line is found to appear in outburst states. The Hα and Hβ lines remain very similar in our spectroscopic monitoring campaign.

Height Dependence of Plasma Properties in a Solar Limb Active Region Observed by Hinode/EIS

  • Lee, Kyoung-Sun;Imada, S.;Moon, Y.J.;Lee, Jin-Yi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.110.2-110.2
    • /
    • 2012
  • We investigate a cool loop and a dark lane over a limb active region on 2007 March 14 by the Hinode/EUV Imaging Spectrometer (EIS). The cool loop is clearly seen in the EIS spectral lines formed at the transition region temperature (log T = 5.8). The dark lane is characterized by an elongated faint structure in coronal spectral lines (log T = 5.8 - 6.1) and rooted on a bright point. We examine their electron densities, Doppler velocities, and non-thermal velocities as a function of distance from the limb using the spectral lines formed at different temperatures (log T = 5.4 - 6.4). The electron densities of the cool loop and the dark lane are derived from the density sensitive line pairs of Mg VII, Fe XII, and Fe XIV spectra. Under the hydrostatic equilibrium and isothermal assumption, we determine their temperatures from the density scale height. Comparing the scale height temperatures to the peak formation temperatures of the spectral lines, we note that the scale height temperature of the cool loop is consistent with a peak formation temperature of the Mg VII (log T = 5.8) and the scale height temperature of the dark lane is close to a peak formation temperature of the Fe XII and Fe XIII (log T = 6.1 - 6.2). It is interesting to note that the structures of the cool loop and the dark lane are most visible in these temperature lines. While the non-thermal velocity in the cool loop slightly decreases (less than 7 km $s^{-1}$) along the loop, that in the dark lane sharply falls off with height. The variation of non-thermal velocity with height in the cool loop and the dark lane is contrast to that in off-limb polar coronal holes which are considered as source of the fast solar wind. Such a decrease in the non-thermal velocity may be explained by wave damping near the solar surface or turbulence due to magnetic reconnection near the bright point.

  • PDF

THE HIGH RESOLUTION SPECTRA OF PU VUL IN 2004 - I (2004년 PU VUL의 고분산 스펙트럼 - I)

  • Yoo, Kye-Hwa
    • Publications of The Korean Astronomical Society
    • /
    • v.20 no.1 s.24
    • /
    • pp.43-48
    • /
    • 2005
  • We present a high resolution spectrum of PU Vul observed at Bohyunsan Optical Astronomy Observatory (BOAO) on April 9, 2004. Permitted emission and nebular lines of PU Vul had been significantly changed compared to all spectra observed since its eruption in 1979. Therefore all new lines should be re-identified and were done so. We do-convoluted a $H{\beta}$ line into several emission components with Gaussian functions. Then we carefully discussed the geometrical feature of PU Vul in April 2004.

Nature of Fe II fluorescent lines in Luminous Blue Variables

  • Lee, Jae-Joon;Chang, Seok-Jun;Seon, Kwang-il;Kim, Hyun-Jeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.51.2-51.2
    • /
    • 2020
  • Luminous blue variables (LBVs) are massive evolved stars that show unpredictable photometric and spectral variation. It is generally assumed that they undergo one or more of large eruptions. We have obtained high dispersion NIR spectra of several LBVs with Immersion GRating INfrared Spectrometer (IGRINS). One notable feature in their IGRINS spectra is the existence of broad lines (~ a few hundred km/s) with unusual boxy profile. They are fluorescent lines of Fe II by Lyman α photons in the stellar wind. However, modeling of these lines with radiative transfer code CMFGEN predicts much weaker line strength. We propose that incorporating broadening of Lyman α line by scattering processes in dense wind can enhance the Fe II fluorescent lines. We further discuss how these Fe II fluorescent lines can be used to characterize massive LBV wind.

  • PDF

Analysis of MMIC-Microstrip Line Using Spectral Domain method (스펙트랄 도메인법을 사용한 다층 GaAs 마이크로스트립선로 해석 모델링)

  • Thakur, J.P.;Son, Chang-Sin;Park, Jun-Seok;Cho, Hong-Gu;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2294-2296
    • /
    • 2005
  • Multilayer microstrip lines are an integral part of an MMIC. This paper presents an analysis of multilayer GaAs-MMIC microstrip line using a spectral domain method(SDM) taking into account the effect of the variation in the thickness of various layers of substrates on the characteristic impedance and the effective dielectric constant of the line. This work is expected to be useful in GaAs foundries for accurate CAD modelling of the microstrip lines up to 40GHz.

  • PDF

Wideband Flat Optical Frequency Comb Generated from a Semiconductor Based 10 GHz Mode-Locked Laser with Intra-cavity Fabry-Perot Etalon

  • Leaird, Daniel E.;Weiner, Andrew M.;Seo, Dongsun
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.19-24
    • /
    • 2014
  • We report stable, wideband, flat-topped, 10 GHz optical frequency comb generation from a semiconductor-based mode-locked ring laser with an intra-cavity high finesse Fabry-Perot etalon. We demonstrate a stable 10 GHz comb with greater than 200 lines within a spectral power variation below 1 dB, which is the largest value obtained from a similar mode-locked laser in our knowledge. Greater than 20 dB of the spectral peak to deep ratio at 0.02 nm resolution, ~92 femtosecond timing jitter over 1 kHz to 1 MHz range, and non-averaged time traces of pulses confirm very stable optical frequency comb lines.

Prediction Equation of Spectral Acceleration Responses in Low-to-Moderate Seismic Regions using Domestic and Overseas Earthquake Records (국내·외 계기지진 정보를 활용한 중·약진 지역의 스펙트럴 가속도 응답 예측식)

  • Shin, Dong Hyeon;Kim, Hyung Joon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.77-86
    • /
    • 2018
  • This study develops an empirical prediction equation of spectral acceleration responses of earthquakes which can induce structural damages. Ground motion records representing hazards of low-to-moderate seismic regions were selected and organized with several influential factors affecting the response spectra. The empirical equation and estimator coefficients for acceleration response spectra were then proposed using a robust nonlinear optimization coupled with a regression analysis. For analytical verification of the prediction equation, response spectra used for low-to-moderate seismic regions were estimated and the predicted results were comparatively evaluated with measured response spectra. As a result, the predicted shapes of response spectra can simulate the graphical shapes of measured data with high accuracy and most of predicted results are distributed inside range of correlation of variation (COV) of 30% from perfectly correlated lines.

Spectral Bio-signature Simulation of full 3-D Earth with Multi-layer Atmospheric Model and Sea Ice Coverage Variation

  • Ryu, Dong-Ok;Seong, Se-Hyun;Lee, Jae-Min;Hong, Jin-Suk;Jeong, Soo-Min;Jeong, Yu-Kyeong;Kim, Sug-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.48.1-48.1
    • /
    • 2009
  • In recent years, many candidates for extra-solar planet have been discovered from various measurement techniques. Fueled by such discoveries, new space missions for direct detection of earth-like planets have been proposed and actively studied. TPF instrument is a fair example of such scientific endeavors. One of the many technical problems that space missions such as TPF would need to solve is deconvolution of the collapsed (i.e. spatially and temporally) spectral signal arriving at the detector surface and the deconvolution computation may fall into a local minimum solution, instead of the global minimum solution, in the optimization process, yielding mis-interpretation of the spectral signal from the potential earth-like planets. To this extend, observational and theoretical understanding on the spectral bio-signal from the Earth serves as the key reference datum for the accurate interpretation of the planetary bio-signatures from other star systems. In this study, we present ray tracing computational model for the on-going simulation study on the Earth bio-signatures. A multi-layered atmospheric model and sea ice variation model were added to the existing target Earth model and a hypothetical space instrument (called AmonRa) observed the spectral bio-signals of the model Earth from the L1 halo orbit. The resulting spectrums of the Earth show well known "red-edge" spectrums as well as key molecular absorption lines important to harbor life forms. The model details, computational process and the resulting bio-signatures are presented together with implications to the future study direction.

  • PDF

EXPANSION VELOCITY INVESTIGATION OF THE ELLIPTICAL PLANETARY NEBULA NGC 6803

  • Choi, Youn-Su;Lee, Seong-Jae;Hyung, Siek
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.6
    • /
    • pp.163-172
    • /
    • 2008
  • Using the spectral data in the 3700 to $10050{\AA}$ wavelength range secured with the Hamilton Echelle Spectrograph (HES) at the Lick observatory, we have investigated the expansion velocities and the physical conditions of the elliptical planetary nebula NGC 6803. Various forbidden and permitted lines, e.g. HI, HeI, HeII, [OIII], [NII], [ArIII], and [SII], indicate complicated but systematic physical conditions variation: electron temperatures $T_{\varepsilon}\;{\sim}\;9000$ - 11000 K and electron number densities $N_{\varepsilon}\;{\sim}\;2000$ - $9000\;cm^{-3}$. The line profile analysis of these ions also indicates the systematic change or the acceleration of the expansion velocities in the range of 10 - $22\;km\;s^{-1}$. We show that the velocity gradient and physical condition found in various ions are closely related to the prolate ellipsoidal structure of NGC 6803. The expansion velocity and the ionic abundance of $O^{2+}$ were derived based on the OII and [OIII] lines. In spite of the discrepancy of ionic abundances derived by the two cases and their line profiles, the expansion velocities of them agree well. We find that the ratios of the red to blue line component of the HeII & OII lines are different from those of the [OIII] or other forbidden lines that indicates a possible involvement of emission of HeII & OII lines. This subtle difference and the different physical condition of the lines are likely to be caused by the elongated geometry and the latitude dependence of the emission zone.

THE SWINGS EFFECTS OF THE A-X SYSTEM AND v''= 1-0 BAND OF CO

  • KIM SANG-JOON
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.2
    • /
    • pp.223-243
    • /
    • 1996
  • We have constructed a line-by-line model of the A-X system of CO in order to analyze the CO bands appearing in the UV spectra of comets. The model includes electronic, rotational, vibrational transitions, excitations by solar UV radiation, and effects of neutral and electron collisions. The major bands of the A-X system occur in the $1200 - 1800{\AA}$ range where the temporal variation of solar irradiation is significant. The solar spectrum in this spectral range shows many emission lines, which cause a significant Swings effect. We derived fluorescence efficiencies of the bands as functions of heliocentric velocity and cometocentric distance using a high resolution spectrum of the sun. We compared our model with a spectrum of comet P/Halley obtained with the IUE, and estimated that the UV Swings effects are less than 20 fluorescence efficiencies for the most bands of the A-X system. We discuss the temporal variation of solar UV irradiation and its effects on the fluorescence efficiencies. The study of the A-X system also requites knowledge of vibrational and rotational fluorescent processes in the infrared and radio regions because the majority of CO molecules in the coma is in the ground rotational states. The solar infrared spectrum near 5 microns, where the fundamental band of CO occurs, contains strong absorption lines of the fundamental band and hot bands of CO and its isotopes. We derived fluorescence efficiencies of the infrared band as functions of heliocentric velocity and cometrocentric distance. The solar absorption lines near 5 microns cause a 20 reduction of the g-factor of the fundamental band at heliocentric velocities close to 0 km/sec. We discuss the effects of neutral and electron collisions on the fluorescence efficiencies of the infrared and UV bands.

  • PDF