• Title/Summary/Keyword: Variation law

Search Result 409, Processing Time 0.024 seconds

Buckling analysis of functionally graded truncated conical shells under external displacement-dependent pressure

  • Khayat, Majid;Poorveis, Davood;Moradi, Shapour
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.1-16
    • /
    • 2017
  • This paper is presented to solve the buckling problem of functionally graded truncated conical shells subjected to displacement-dependent pressure which remains normal to the shell middle surface throughout the deformation process by the semi-analytical finite strip method. Material properties are assumed to be temperature dependent, and varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The governing equations are derived based on first-order shear deformation theory which accounts for through thickness shear flexibility with Sanders-type of kinematic nonlinearity. The element linear and geometric stiffness matrices are obtained using virtual work expression for functionally graded materials. The load stiffness also called pressure stiffness matrix which accounts for variation of load direction is derived for each strip and after assembling, global load stiffness matrix of the shell which may be un-symmetric is formed. The un-symmetric parts which are due to load non-uniformity and unconstrained boundaries have been separated. A detailed parametric study is carried out to quantify the effects of power-law index of functional graded material and shell geometry variations on the difference between follower and non-follower lateral buckling pressures. The results indicate that considering pressure stiffness which arises from follower action of pressure causes considerable reduction in estimating buckling pressure.

Design Study of a Small Scale Soft Recovery System

  • Yoo, Il-Yong;Lee, Seung-Soo;Cho, Chong-Du
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1961-1971
    • /
    • 2006
  • A soft recovery system (SRS) is a device that stops a high speed projectile without damaging the projectile. The SRS is necessary to verify the shock resistant requirements of microelectronics and electro-optic sensors in smart munitions, where the projectiles experience over 20,000 g acceleration inside the barrel. In this study, a computer code for the performance evaluation of a SRS based on ballistic compression decelerator concept has been developed. It consists of a time accurate compressible one-dimensional Euler code with use of deforming grid and a projectile motion analysis code. The Euler code employs Roe's approximate Riemann solver with a total variation diminishing (TVD) method. A fully implicit dual time stepping method is used to advance the solution in time. In addition, the geometric conservation law (GCL) is applied to predict the solutions accurately on the deforming mesh. The equation of motion for the projectile is solved with the four-stage Runge-Kutta time integration method. A small scale SRS to catch a 20 mm bullet fired at 500 m/s within 1,600 g-limit has been designed with the proposed method.

Open Boundary Conditions in Parabolic Approximation Model (포물형 근사식 수치모형의 투과 경계조건)

  • Seo, Seung-Nam;Lee, Dong-Young
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.2
    • /
    • pp.170-178
    • /
    • 2007
  • Most of parabolic approximation models employ a relatively limited open boundary condition in which there is no depth variation in the longshore direction outside of the computation domain so that Snell's law may be presumed to hold. Existing Kirby's condition belongs to this category and in the paper both modified Kirby's method and Dirichlet boundary condition are presented in detail and numerical results of three methods were shown. Judging from computation to wave propagations over a circular shoal in a constant depth, the method based on present Dirichlet boundary condition with fictitious numerical adjusting regions in both sides of the computation domain gives the least distorted amplitude ratio distribution.

Assessment of velocity-acceleration feedback in optimal control of smart piezoelectric beams

  • Beheshti-Aval, S.B.;Lezgy-Nazargah, M.
    • Smart Structures and Systems
    • /
    • v.6 no.8
    • /
    • pp.921-938
    • /
    • 2010
  • Most of studies on control of beams containing piezoelectric sensors and actuators have been based on linear quadratic regulator (LQR) with state feedback or output feedback law. The aim of this study is to develop velocity-acceleration feedback law in the optimal control of smart piezoelectric beams. A new controller which is an optimal control system with velocity-acceleration feedback is presented. In finite element modeling of the beam, the variation of mechanical displacement through the thickness is modeled by a sinus model that ensures inter-laminar continuity of shear stress at the layer interfaces as well as the boundary conditions on the upper and lower surfaces of the beam. In addition to mechanical degrees of freedom, one electric potential degree of freedom is considered for each piezoelectric element layer. The efficiency of this control strategy is evaluated by applying to an aluminum cantilever beam under different loading conditions. Numerical simulations show that this new control scheme is almost as efficient as an optimal control system with state feedback. However, inclusion of the acceleration in the control algorithm increases practical value of a system due to easier and more accurate measurement of accelerations.

Application of the Cost-Distance Measures for Designating Zone Boundaries in DIF Zoning

  • Choi, Joon Young;Choei, Nae Young
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.3-13
    • /
    • 2016
  • The development impact fee (DIF) zoning is used to adequately provide the pre-planned urban infrastructures in those urban and regional sectors where significant urban sprawl has already taken place followed by the rapid population growth. The infrastructure installation fees are levied to those landowners whose properties belong to the DIF zone in which they enjoy the direct benefits that accrue from the installed infrastructures. While the law is deemed to be equitable in that the actual beneficiaries pay for their benefits, it is required to designate the zone boundaries accurately and consistently since they are the very dividers that differentiate the legitimate fee-payers and the free-riders. This study, especially, tries to test a seemingly advanced alternative, so-called the cost-weighted distance measure, as a potential candidate to replace the current air-distance measures to designate the zone boundaries. The statistics indicate that the coefficient of variation for major indices spread from 11.75 to 35.6 in the case of the latter method, it only ranges from 0.21 to 0.76 in the case of the former. The zonal outcomes also show much higher consistency in their shapes. It is hoped, in this context, that the study findings could possibly be adopted in the future research efforts expected soon to amend and improve the current DIF zoning law.

SynRM Driving CVT System Using an ARGOPNN with MPSO Control System

  • Lin, Chih-Hong;Chang, Kuo-Tsai
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.771-783
    • /
    • 2019
  • Due to nonlinear-synthetic uncertainty including the total unknown nonlinear load torque, the total parameter variation and the fixed load torque, a synchronous reluctance motor (SynRM) driving a continuously variable transmission (CVT) system causes a lot of nonlinear effects. Linear control methods make it hard to achieve good control performance. To increase the control performance and reduce the influence of nonlinear time-synthetic uncertainty, an admixed recurrent Gegenbauer orthogonal polynomials neural network (ARGOPNN) with a modified particle swarm optimization (MPSO) control system is proposed to achieve better control performance. The ARGOPNN with a MPSO control system is composed of an observer controller, a recurrent Gegenbauer orthogonal polynomial neural network (RGOPNN) controller and a remunerated controller. To insure the stability of the control system, the RGOPNN controller with an adaptive law and the remunerated controller with a reckoned law are derived according to the Lyapunov stability theorem. In addition, the two learning rates of the weights in the RGOPNN are regulating by using the MPSO algorithm to enhance convergence. Finally, three types of experimental results with comparative studies are presented to confirm the usefulness of the proposed ARGOPNN with a MPSO control system.

A Study About Effects of Ice Making Processes on Variation in Physical Properties of a Model Ice Sheet (빙 생성 공정이 모형빙판의 물리적 특성 변화에 미치는 영향 연구)

  • Hoyong, Park;Jinho, Jang;Cheolhee, Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.6
    • /
    • pp.355-361
    • /
    • 2022
  • In order to produce model ice sheets having targeted physical properties in accordance with the law of similitude, the ice model basin of Korea Research Institute of Ships and Ocean Engineering carries out a series of processes such as cooling, seeding, freezing, and tempering. Performance in ice field of ice going ships or marine structures is evaluated from model tests in ice conditions made out of a model ice sheet such as level ice, pack ice, brash ice, and ice rubble field, etc. In this study, we investigated effects of micro-bubble layers and seeding of ice nuclei included in the process generating a model ice sheet on change in physical properties of thickness, density, and flexural strength.

Pore structure evolution characteristics of sandstone uranium ore during acid leaching

  • Zeng, Sheng;Shen, Yuan;Sun, Bing;Zhang, Ni;Zhang, Shuwen;Feng, Song
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4033-4041
    • /
    • 2021
  • To better understand the permeability of uranium sandstone, improve the leaching rate of uranium, and explore the change law of pore structure characteristics and blocking mechanism during leaching, we systematically analyzed the microstructure of acid-leaching uranium sandstone. We investigated the variable rules of pore structure characteristics based on nuclear magnetic resonance (NMR). The results showed the following: (1) The uranium concentration change followed the exponential law during uranium deposits acid leaching. After 24 h, the uranium leaching rate reached 50%. The uranium leaching slowed gradually over the next 4 days. (2) Combined with the regularity of porosity variation, Stages I and II included chemical plugging controlled by surface reaction. Stage I was the major completion phase of uranium displacement with saturation precipitation of calcium sulfate. Stage II mainly precipitated iron (III) oxide-hydroxide and aluminum hydroxide. Stage III involved physical clogging controlled by diffusion. (3) In the three stages of leaching, the permeability of the leaching solution changed with the pore structure, which first decreased, then increased, and then decreased.

Design of the 1/8 Scaled HU-KINS Based on the Scaling Laws for the Experimental Investigation of Thermal-Hydraulic Effect of CANDU-6 Moderator (CANDU-6 원자로 감속재 열수력 개별영향실험을 위한 축소화 기법에 따른 1/8 축소형 HU-KINS 설계)

  • Lee, Jae-Young;Kim, Man-Woong;Kim, Nam-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.825-833
    • /
    • 2006
  • To investigate the moderator coolability for CANDU-6 reactors, a test facility (HU-KINS) has been manufactured as a 1/8 scaled-down of a calandria tank. In the design of the test facility, a scaling law was developed in such a way to consider the thermal-hydraulic characteristics of a CANDU-6 moderator. The proposed scaling law takes into consideration of the energy conservation, the dynamic similitude such as dimensionless numbers, Archimedes number (Ar) and Reynolds number (Re), and thermal-hydraulic properties similitude. Using this proposed scaling law, the thermal-hydraulic scaling analyses of similar test facilities such as the SPEL (1/10 scale) and the STERN (1/4 scale), have been identified. As a result, in the case of the SPEL, while the energy conservation is well defined, the similarities of Ar and the heat density are not well considered. As for the similarity of the STERN, while both the energy conservation and the characteristics of Ar are well defined, the heat density is not. In the meanwhile, the HU-KINS test facility with 1/8 length scaled-down is well similitude in compliance with all similarities of the energy conservation, the fluid dynamics and thermal-hydraulic properties. To verify the adequacy of the similarities in terms of thermal-hydraulics, a computational fluid dynamic (CFD) analysis has been conducted using the CFX-5 code. As the results of the CFD analyses, the predicted flow patterns and variation of axial properties inside the calandria tank are well consistant with those of previous studies performed with FLUENT and this implies that the present scaling method is acceptable.

Experimental study of rainfall spatial variability effect on peak flow variability using a data generation method (자료생성방법을 사용한 강우의 공간분포가 첨두유량의 변동성에 미치는 영향에 대한 실험적 연구)

  • Kim, Nam Won;Shin, Mun Ju
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.6
    • /
    • pp.359-371
    • /
    • 2017
  • This study generated flood time series of ungauged catchments in the Andongdam catchment using a distributed rainfall-runoff model and data generation method, and extracted the peak flows of 50 catchments to investigate the effect of rainfall spatial variability on peak flow simulation. The model performance statistics for three gauged catchments were reasonable for all events. The flood time series of the 50 catchments were generated using distributed and mean rainfall time series as input. The distribution of the peak flow using the mean rainfall was similar or slightly different to that using the distributed rainfall when the distribution of the distributed rainfall was nearly uniform. However, the distribution of the peak flow using the mean rainfall was reduced significantly compared to that using the distributed rainfall when actual storms moved to the top or bottom of the study catchment, or the rainfall was randomly distributed. These cases were 35% of total number events. Therefore, the spatial variability of rainfall should be considered for flood simulation. In addition, the power law relationship estimated using the peak flow of gauged catchments cannot be used for estimating the peak flow of ungauged independent catchments due to latter's significant variation of the peak flow magnitude.