• Title/Summary/Keyword: Variation and change

Search Result 3,776, Processing Time 0.037 seconds

Analysis of Performance Characteristic for Small Scale Hydro Power Plant with Long Term Inflow Condition Change (장기유입량 변화에 의한 소수력발전소 성능특성분석)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • New & Renewable Energy
    • /
    • v.5 no.4
    • /
    • pp.39-43
    • /
    • 2009
  • The variation of inflow at stream and hydrologic performance for small scale hydro power(SSHP) plants due to climate change have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for SSHP plants is established. Monthly inflow data measured at Andong dam for 32 years were analyzed. The existing SSHP plant located in upstream of Andong dam was selected and analyzed hydrologic performance characteristics. The predicted results from the developed models show that the data were in good agreement with measured results of long term inflow at Andong dam and the existing SSHP plant. Inflow and ideal hydro power potential had increased greatly in recent years, however, these did not lead annual energy production increment of existing SSHP plant. As a results, it was found that the models represented in this study can be used to predict the primary design specifications and inflow of SSHP plants effectively.

  • PDF

Characteristics of Climate in the Eastern Coastal Regions of Korean Peninsula (한반도 동해안 지방의 기후 특성)

  • KIM Young-Seup;HAN Young-Ho;SHIN Soo-Kyeong;HONG Sung-Kun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.3
    • /
    • pp.314-325
    • /
    • 1994
  • Characteristics of climate in the eastern coastal regions of Korean Peninsula were studied using the meteorological and coastal sea surface temperature (SST) data which were compiled from 1961 to 1990. In the winter half year (from October to March), air temperature (AT) and precipitation of the eastern coastal regions were considerably higher than those of the western and inland regions, but relative humidity was $8{\sim}15\%$ lower. AT of coastal regions was closely related to the variation of coastal SST. These characteristics were more noticeable in the eastern coastal areas and in lower latitude regions. Quantitatively, the $1.0^{\circ}C$ variation of coastal SST may have resulted in the $1.0^{\circ}C{\sim}1.5^{\circ}C$ variation for AT in coastal regions. In the same way as temperature, vapor pressure in coastal regions was also influenced by coastal SST. Relative humidity change corresponding to the $1.0^{\circ}C$ variation of coastal SST was $3.7\%{\sim}6.5\%$. Net heat exchange amounts were positive (sea surface gaining energy) in all coastal regions. Sea surface gained net heat from March to September, and lost it from October to February. Variation of AT in coastal regions was also related to the sensible and latent heat exchanges. Sensible and latent heat amount corresponding to the $1.0^{\circ}C$ variation of AT were $10Wm^{-2}$ at Kangnung, and $8Wm^{-2}$ at Pohang and $13Wm^{-2}$ at Pusan.

  • PDF

Experimental Study of the Internal/external Pressure Variation of TTX Travelling through a Tunnel (한국형 틸팅차량의 터널 주행시 실내/외 압력변화에 대한 실험적 연구)

  • Yun, Su-Hwan;Kwak, Min-Ho;Lee, Dong-Ho;Kwon, Hyeok-Bin;Ko, Tae-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.309-314
    • /
    • 2009
  • When a train enters into a tunnel, a compression wave is generated by a front nose and a expansion wave is generated by a rear tail respectively. The interaction between pressure waves and the train makes the internal and external pressure of the train change dramatically. In this paper, we had measured the internal and external pressure variations of TTX and analyzed the pressure variations as the tunnel length. Also, the rate of internal pressure variations were investigated with the current airtight condition of TTX. In short tunnels, the internal and external pressure variation were not large because the superposition of pressure waves was not happened. In long tunnels, however, the rapid and large pressure variations were shown because of the superpositions between the same sort of pressure waves, such as expansion wave and expansion wave or compression wave and compression wave. In specific length tunnels, the pressure variation and the pressure variation rates were largely lessened because the compression wave and expansion wave were superposed.

Wear Characteristics of Automotive Disc Brakes: Effect of Gray Cast Iron Microstructures (자동차 브레이크용 디스크의 미세조직에 따른 편마모 특성에 관한 연구)

  • Lee, Jae-Young;Kim, Seong-Jin;Han, Chang-Joo;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.235-239
    • /
    • 2002
  • The objective of the experiment is to investigate the effect of microstructures of gray cast iron oil wear characteristics of automotive disc brakes. Six different gray cast iron rotors were manufactured by changing carbon equivalent and cooling rate. The change of DTV (disc thickness variation) before and after wear tests was measured to examine the wear properties according to the microstructures of gray iron discs since the DTV generation is caused by the circumferential uneven wear. Experimental results showed that the morphology of graphite flake and hardness in gray cast iron were crucially associated with the change of DTV. In particular, the DTV changes of rotor decrease when the length and area fraction of graphite flake in brake rotors increase and hardness of brake discs reduces.

  • PDF

Optimal Measuring Point Selection Method of Indoor Temperature using CFD Analysis (CFD 해석을 이용한 실내 온도 최적 측정 위치 선정 방법)

  • Lee, Min-Goo;Jung, Kyung-Kwon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1559-1566
    • /
    • 2012
  • This paper proposed the method to find out the optimal sensing point of temperature in test-bed with the sensor of temperature, such as real residence. We selected optimal locations by checking temperature change which was simulated by the means of CFD (Computational Fluid Dynamics) and the variation of air flow. We made 3-dimensional model of the testbed using DesignBuilder software, and ran the CFD. We selected the optimum temperature measurement location of 1.5 m height from the floor and low temperature variation. The experiments were conducted 30 temperature and humidity sensors in real place. After that, we confirmed the results of temperature change.

Correlation and Simple Linear Regression (상관성과 단순선형회귀분석)

  • Pak, Son-Il;Oh, Tae-Ho
    • Journal of Veterinary Clinics
    • /
    • v.27 no.4
    • /
    • pp.427-434
    • /
    • 2010
  • Correlation is a technique used to measure the strength or the degree of closeness of the linear association between two quantitative variables. Common misuses of this technique are highlighted. Linear regression is a technique used to identify a relationship between two continuous variables in mathematical equations, which could be used for comparison or estimation purposes. Specifically, regression analysis can provide answers for questions such as how much does one variable change for a given change in the other, how accurately can the value of one variable be predicted from the knowledge of the other. Regression does not give any indication of how good the association is while correlation provides a measure of how well a least-squares regression line fits the given set of data. The better the correlation, the closer the data points are to the regression line. In this tutorial article, the process of obtaining a linear regression relationship for a given set of bivariate data was described. The least square method to obtain the line which minimizes the total error between the data points and the regression line was employed and illustrated. The coefficient of determination, the ratio of the explained variation of the values of the independent variable to total variation, was described. Finally, the process of calculating confidence and prediction interval was reviewed and demonstrated.

Historical changing of flow characteristics over Asian river basins

  • Ha, Doan Thi Thu;Kim, Tae-Son;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.118-118
    • /
    • 2020
  • This study investigates the change of flow characteristics over 10 Asian river basins in the past 30 years (1976-2005). The variation is estimated from The Soil and Water Assessment Tool (SWAT) model outputs based on reanalysis data which was bias-corrected for Asian monsoon reagion. The model was firstly calibrated and validated using observed data for daily streamflow. Four statistical criteria were applied to evaluate the model performance, including Coefficient of determination (R2), Nash - Sutcliffe model efficiency coeffi cient (NSE), Root mean square error-observations standard deviation ratio (RSR), and Percentage Bias (PBIAS). Then parameters of the model were applied for the historical period 1976-2005. The estimates show a temporal non-considerable increasing rate of daily streamflow in most of the basins over the past 30 years. The difference of monthly discharge becomes more significant during the months in the wet season (June to September) in all basins. The seasonal runoff shows significant difference in Summer and Autumn, when the rainfall intensity is higher. The line showing averaged runoff/rainfall ratio in all basins is sharp, presenting high variation of seasonal runoff/rainfall ratio from season to season.

  • PDF

Color variation induced by abutments in the superior anterior maxilla: an in vitro study in the pig gingiva

  • Atash, Ramin;Boularbah, Mohamed-Reda;Sibel, Cetik
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.6
    • /
    • pp.423-432
    • /
    • 2016
  • PURPOSE. The aim of this work is to evaluate different types of materials used for making implant abutments, by means of an in vitro study and a review of the literature, in order to identify the indications for a better choice of an implant-supported restoration in the anterior section. MATERIALS AND METHODS. 5 implant abutments were tested in a random order in the superior anterior maxilla of pig gingiva (n = 8): titanium dioxide (Nobel Biocare); zirconium dioxide, Standard BO shade (Nobel Biocare, Kloten, Switzerland); zirconium dioxide, Light BI shade (Nobel Biocare); zirconium dioxide, Intense A 3.5 shade (Nobel Biocare); and aluminium oxide. Each abutment was tested for 2 mm and 3 mm thickness. To determine color variation, VITA Easyshade Advance spectrophotometer (Vita Zahnfabrik, Bad Sackingen, Germany) was used. RESULTS. Results showed that the color variation induced by the abutment would be affected by the abutment material and gingival thickness, when the gingival thickness is 2 mm. All materials except zirconium dioxide (Standard shade) caused a visible change of color. Then, as the thickness of the gingiva increased to 3 mm, the color variation was attenuated in a significant manner and became invisible for all types of abutments, except those made of aluminium oxide. CONCLUSION. Zirconium dioxide is the material causing the lowest color variation at 2 mm and at 3 mm, whereas aluminium oxide causes the highest color variation no matter the thickness.

Measurement of Blood Flow Variation using Impedance Method (임피던스법을 이용한 혈류량 변화 측정)

  • Jeong Do-Un;Kang Seong-Chul;Jeon Gye-Rock
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.693-696
    • /
    • 2006
  • In this study, we made the system to measure variation of blood flow using bio-electrical impedance analysis method. The system, which could measure variation of impedance according to pressure change by artificial pressure, consists of pressure measurement and impedance measurement by 4-electrode method. Pressure measurement splits into semiconducting pressure sensor and electronic circuit for processing output signal. In addition, impedance measurement splits into constant current source circuit and lock-in amplifier for detection impedance signal. We experimented feature of impedance measurement using standard resistance to evaluate the system characteristic. As well as, we experimented to estimate variation of blood flow by measuring impedance and blood flow resistance ratio using mean arterial pressure and variation of blood flow with experimental group. As result of this study, blood flow resistance ratio and variation of blood flow were definitely in inverse proportion and were -0.96776 as correlation coefficient by correlation analysis.

  • PDF

Variation of Human Thermal Radiation Characteristics Applying Different Clothing Materials (의복 소재 변경에 따른 인체 열상신호 변화 특성)

  • Chang, Injoong;Bae, Ji-Yeul;Lee, Namkyu;Kwak, Hwykuen;Cho, Hyung Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.644-653
    • /
    • 2019
  • With the development of themal observatory device(TOD), thermal camouflage system has been applied not only to the weapon system but also to the combat suit for soldiers. In this paper, the characteristic of thermal radiation of human body depending on the clothing material properties was analyzed through numerical simulations. The bioheat equation with thermoregulatory model was solved to obtain the realistic surface temperature of human body and these results are combined with the emissivity of human skin and clothing in order to calculate the thermal signature from the human body. According to each thermal resistance of clothing, the optimal background radiance which makes contrast radiance intensity(CRI) be lowest is different. Also, the average CRI variation per thermal resistance change is about twice as much as the case of evaporative resistance change.