• Title/Summary/Keyword: Variable-stiffness

Search Result 328, Processing Time 0.021 seconds

The Flexural Strengthening Effect of I-Shape PFRP Member Using Carbon Fiber Sheet (탄소섬유시트를 이용한 I형 PFRP 부재의 휨보강 효과)

  • Lee, Young-Geun;Kim, Sun-Hee;Lee, Kang-Yeon;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.1-7
    • /
    • 2013
  • In recent years, fiber reinforced polymer plastic composites are readily available in the construction industry. Fiber reinforced polymer composite has many advantages such as high specific strength and high specific stiffness, high corrosion resistance, light-weight, magnetic transparency, etc. In this paper, we present the result of investigation pertaining to the flexural behavior of flange strengthened I-shape pultruded fiber reinforced polymer plastic (PFRP) member using carbon fiber sheet (CFRP sheet). Test variable is consisted of the number of layers of strengthening CFRP sheet from 0 to 3. From the experimental results, flexural strengthening effect of flange strengthened I-shape PFRP member using CFRP sheet is evaluated and it was found that 2 layers of strengthening CFRP sheet are appropriate considering efficiency and workability.

An Experimental Study on the Static and Dynamic Characteristics of High Speed Air Foil Bearings (고속 공기 포일 베어링의 정적${\cdot}$동적 특성에 관한 실험적 연구)

  • Jo Jun-Hyeon;Lee Yong-Bok;Kim Chang-Ho;Rhim Yoon-Chul
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.186-194
    • /
    • 2004
  • Experiments were conducted to determine the structural static and dynamic characteristics of air foil bearings. The housing of the bearing on the journal was driven by an impact hammer which was used to simulate dynamic forces acting on the bump loll with various leading condition. Two different bump foils (Cu-coated bump and viscoelastic bump) were tested and the static and dynamic coefficients of two bump foils compared, based on the experimental measurements for a wide range of operating conditions. The static and dynamic characteristics of air foil bearings were extracted 0rpm the frequency response function by least square method and IV(Instrumental Variable) method. The experiment was tested at 0rpm and $10,000\~16,000rpm$, and loaded on $50\~150N$. From the test results, the possibility of the application of high load and high speed condition is suggested.

  • PDF

Probabilistic Structural Safety Assessment Considering the Initial Shape and Non-linearity of Steel Cable-Stayed Bridges (강사장교의 초기형상과 비선형성을 고려한 확률론적 구조안전성 평가)

  • Bang, Myung-Seok;Han, Sung-Ho;Lee, Woo-Sang;Lee, Chin-Ok
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.91-99
    • /
    • 2010
  • In this study, the advanced numerical algorithm is developed which can performed the static and dynamic stochastic finite element analysis by considering the effect of uncertainties included in the member stiffness of steel cable-stayed bridges and seismic load. After conducting the linear and nonlinear initial shape analysis, the advanced numerical algorithm is the assessment tool which can performed structural the response analysis considering the static linearity and non-linearity of before or after induced intial tensile force, and examined the reliability assessment more efficiently. The verification of the developed numerical algorithm is evaluated by analyzing the regression analysis and coefficient of correlation using the direct monte carlo simulation. Also, the dynamic response characteristic and coefficient of variation of the steel cable-stayed bridge is calculated by considering the uncertainty of random variables using the developed numerical algorithm. In addition, the quantitative structural safety of the steel cable-stayed bridges is evaluated by conducting the reliability assessment based upon the dynamic stochastic finite element analysis result.

Design and demonstrators testing of adaptive airfoils and hingeless wings actuated by shape memory alloy wires

  • Mirone, Giuseppe
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.89-114
    • /
    • 2007
  • Two aspects of the design of a small-scale smart wing are addressed in this work, related to the ability of the wing to modify its cross section assuming the shape of two different airfoils and to the possibility of deflecting the profiles near the trailing edge in order to obtain hingeless control surfaces. The actuation is provided by one-way shape memory alloy wires eventually coupled to springs, Shape Memory Alloys (SMAs) being among the most promising materials for this kind of applications. The points to be actuated along the profiles and the displacements to be imposed are selecetd so that they satisfactorily approximate the change from an airfoil to the other and to result in an adequate deflection of the control surface; the actuators and their performances are designed so that an adequate wing stiffness is guaranteed, in order to prevent excessive deformations and undesired airfoil shape variations due to aerodynamic loads. The effect of the pressure distributions, calculated by way of the XFOIL software, and of the actuators loads, is estimated by FE analyses of the loaded wing. Two prototypes are then realised incorporating the variable airfoil and the hingeless aileron features respectively, and the verification of their shapes in both the actuated and non-actuated states, supported by image analysis techniques, confirms that interesting results are achievable with the proposed lay out and design considerations.

Global seismic damage assessment of high-rise hybrid structures

  • Lu, Xilin;Huang, Zhihua;Zhou, Ying
    • Computers and Concrete
    • /
    • v.8 no.3
    • /
    • pp.311-325
    • /
    • 2011
  • Nowadays, many engineers believe that hybrid structures with reinforced concrete central core walls and perimeter steel frames offer an economical method to develop the strength and stiffness required for seismic design. As a result, a variety of such structures have recently been applied in actual construction. However, the performance-based seismic design of such structures has not been investigated systematically. In the performance-based seismic design, quantifying the seismic damage of complete structures by damage indices is one of the fundamental issues. Four damage states and the final softening index at each state for high-rise hybrid structures are suggested firstly in this paper. Based on nonlinear dynamic analysis, the relation of the maximum inter-story drift, the main structural characteristics, and the final softening index is obtained. At the same time, the relation between the maximum inter-story drift and the maximum roof displacement over the height is also acquired. A double-variable index accounting for maximum deformation and cumulative energy is put forward based on the pushover analysis. Finally, a case study is conducted on a high-rise hybrid structure model tested on shaking table before to verify the suggested quantities of damage indices.

The Comparison of PTT and Systolic Blood Pressure in a hemorrhaged Rat (출혈을 일으킨 흰쥐에서의 PTT와 수축기 혈압 비교)

  • Shim, Young-Woo;Lee, Ju-Hyung;Yang, Dong-In;Kim, Deok-Won
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.138-140
    • /
    • 2009
  • Hemorrhage shock occupies high rate in trauma patient's mortality and blood pressure is the variance that judges early diagnosis and the effect of remedy. Systolic blood pressure is related to pulse transit time(PTT). PTT means the time that is required to flow from the heart to peripheral artery. PTT is influenced from the length, cross section and stiffness of the blood vessels. It is hard to evaluate the correlation between systolic blood pressure and PTT because they are variable in human body. In this paper, we evaluated the correlation between the systolic blood pressure and PTT in normal and hemorrhage states using standardized rat. PTT is defined as the time differences between the R peak and the peak of pulse wave. The analyzed time differences of ECG and blood pressure are analyzed every 5minutes for 30 seconds when there is before and after bleeding. Before bleeding, systolic blood pressure and PTT are steadily preserved but when the bleeding comes started, systolic blood pressure is declined. However PTT was increased and decreased. Under the circumstance that the standardized rat is controlled by age, the length of the blood vessels, and any disease, it shows that PTT measurement using systolic blood pressure of bleeding is impossible.

  • PDF

A Study on the Vibration Analysis and Optimization for the Composite Optical Structure of an Aircraft (복합재료를 적용한 항공기용 카메라 구조 경량화 설계 및 최적조건 선정에 관한 연구)

  • Kim, Byeong-Jun;Lee, Jun-Ho;Lee, Haeng-Bok;Jung, Dae-Yoon;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.230-235
    • /
    • 2012
  • This paper presents the vibration characteristics and the optimization using the orthogonal array about applied composite optical structure of an aircraft. To acquire the vibration characteristics for stable line of sight, modal analysis are performed by using multi-body program ADAMS. And to optimize optical structure, for design variables were selected, larger-the-better characteristics were considered using results of S/N ratio and orthogonal array $L_9(3^4)$. When bearing constraints are selected, radial, axial and moment stiffness value are used to analysis for optimization until now. But B.S.R which is non-dimensional parameter is proposed, structures including bearings can be used for optimization. And then having a result of lager-the-better, the optimized values of each design variable were successfully suggested.

Static analysis of non-uniform heterogeneous circular plate with porous material resting on a gradient hybrid foundation involving friction force

  • Rad, A. Behravan;Farzan-Rad, M.R.;Majd, K. Mohammadi
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.591-610
    • /
    • 2017
  • This paper is concerned with the static analysis of variable thickness of two directional functionally graded porous materials (FGPM) circular plate resting on a gradient hybrid foundation (Horvath-Colasanti type) with friction force and subjected to compound mechanical loads (e.g., transverse, in-plane shear traction and concentrated force at the center of the plate).The governing state equations are derived in terms of displacements based on the 3D theory of elasticity, assuming the elastic coefficients of the plate material except the Poisson's ratio varying continuously throughout the thickness and radial directions according to an exponential function. These equations are solved semi-analytically by employing the state space method (SSM) and one-dimensional differential quadrature (DQ) rule to obtain the displacements and stress components of the FGPM plate. The effect of concentrated force at the center of the plate is approximated with the shear force, uniformly distributed over the inner boundary of a FGPM annular plate. In addition to verification study and convergence analysis, numerical results are displayed to show the effect of material heterogeneity indices, foundation stiffness coefficients, foundation gradient indices, loads ratio, thickness to radius ratio, compressibility, porosity and friction coefficient of the foundation on the static behavior of the plate. Finally, the responses of FG and FG porous material circular plates to compound mechanical loads are compared.

Dynamic behavior of smart material embedded wind turbine blade under actuated condition

  • Mani, Yuvaraja;Veeraragu, Jagadeesh;Sangameshwar, S.;Rangaswamy, Rudramoorthy
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.211-217
    • /
    • 2020
  • Vibrations of a wind turbine blade have a negative impact on its performance and result in failure of the blade, therefore an approach to effectively control vibration in turbine blades are sought by wind industry. The small domestic horizontal axis wind turbine blades induce flap wise (out-of-plane) vibration, due to varying wind speeds. These flap wise vibrations are transferred to the structure, which even causes catastrophic failure of the system. Shape memory alloys which possess physical property of variable stiffness across different phases are embedded into the composite blades for active vibration control. Previously Shape memory alloys have been used as actuators to change their angles and orientations in fighter jet blades but not used for active vibration control for wind turbine blades. In this work a GFRP blade embedded with Shape Memory Alloy (SMA) and tested for its vibrational and material damping characteristics, under martensitic and austenite conditions. The embedment portrays 47% reduction in displacement of blade, with respect to the conventional blade. An analytical model for the actuated smart blade is also proposed, which validates the harmonic response of the smart blade.

Vibration response of the boat composite shafting having constant velocity joint during change of the operation regime

  • Shuripa, V.-A;Kim, J.-R;Kil, B.-L;Kim, Y.-H;Jeon, H.-J
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.382-392
    • /
    • 2004
  • The usage of constant velocity (CV) joint is effective for motorboats on gliding regime of the motion. During transition on the gliding when angle of the CV differs from null on driving and driven composite shafts there are moments of the second order. Excitation of oscillations of the second order moments occurs when driving shafts transmits a variable torque. which generates through CV joint a lateral moment acting on the bearing. As a result of oscillations from a resonating harmonic of a shafting the harmonic with the greater or periodically varying amplitude for power condition trough transferring to nominal power 144kW. Beating conditions coincide with third mode having frequency 45.486 Hz. In that case there is high increasing of the equivalent stresses. The forming of the stiffness of the composite material is concerned to use most orientation of the layer angle in the range of $\pm$60 degrees relatively of shaft axis. Application of that angles for layer orientation gives possibility to avoid high disturbance of the shafting for motorboat transition regime.