• Title/Summary/Keyword: Variable-Span Wing

Search Result 6, Processing Time 0.018 seconds

Aerodynamics and Flight Control of Air Vehicle with Variable Span Morphing Wing (가변스팬 모핑날개를 가진 비행체의 공력특성 및 비행 제어)

  • Bae, Jae-Sung;Hwang, Jai-Hyuk;Park, Sang-Hyuk;Kim, Jong-Hyuk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.1-8
    • /
    • 2010
  • In the aerospace field, the study on a morphing-wing is in progress to improve flight performance and perform multi flight mission. There are many concepts of morphing-wing such as camber-change, wing-twist, variable-span, and so on. In this study, the aerodynamic characteristics and flight control of an air vehicle with a variable-span morphing wing (VSMW) have been investigated. VSMW with symmetric span control(SSC) can increase cruising range of aircraft by reducing drag in various flight condition. VSMW with anti-symmetric span control(ASSC) can be used in the roll control of an aircraft. The flight control about pure rolling dynamic system and full dynamic system have been performed about the cruise missile.

Aerodynamic Characteristics of a Variable Span Wing Flying Inside a Channel I (Effects of Wing Aspect Ratio and Guideway) (채널 내를 비행하는 가변스팬 날개 공력특성 I (가로세로비 및 안내로 영향))

  • Han, Cheolheui
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.11-16
    • /
    • 2016
  • In this paper, an experimental study on the aerodynamic characteristics of a variable span wing flying inside a channel guideway is accomplished using wind tunnel testing. A variable span wing with a NACA 0012 airfoil section was fabricated and actuated using a linear servo motor. The aerodynamic effects of 1) wing aspect ratio, 2) ground effect, and 3) the gap between the wingtip and the wing fence were investigated. It was found that both ground effect and wing fence gap increased lift. Also, the wing fence gap does not significantly affect drag. Therefore, it was found that a variable span mechanism can be used as an effective high lift device when flap use is limited.

Aerodynamic Characteristics of a Variable-Span Wing Flying Inside a Channel II (Effect of Asymmetric Wing Extensions) (채널 내를 비행하는 가변스팬 날개 공력특성 II (비대칭 날개 펼침))

  • Han, Cheolheui
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.3
    • /
    • pp.39-43
    • /
    • 2016
  • In this paper, a wind-tunnel test is accomplished to investigate the roll characteristics of a variable-span wing flying inside a channel. The factors that affect the roll characteristics of the wing were identified by analyzing the measured data; accordingly, when the wing is flying without both the ground and sidewall effects, the asymmetric wing extension causes the roll moment. Both the ground and the sidewall can increase the roll moment, but when the wing is affected by both the ground and the sidewall, the roll moment does not increase as much as the case where the wing is only affected by the ground. Also, the aerodynamic characteristics of the flying wing inside a channel are the nonlinear function of the wing height and the gap between the wingtip and the sidewall, both of which should be considered in a study of the stability and the flight control of the wing-in-ground effect of the vehicle flying inside a channel.

Morphological variables restrict flower choice of Lycaenid butterfly species: implication for pollination and conservation

  • Mukherjee, Subha Shankar;Hossain, Asif
    • Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.305-312
    • /
    • 2021
  • Background: Butterflies make an important part for plant-pollinator guild. These are nectar feeder or occasionally pollen feeder and thus proboscis of the butterfly species are considered as one of the most important variable in relation to the collection of food from plants. In butterfly-plant association, nectar source is principally determined by quality of nectar, corolla length, and nectar quantity. For the butterfly, nectar uptake is determined by proboscis length because flowers with long corolla restrict butterfly species containing shorter proboscis. Empirical studies proved that butterfly species with high wing loading visit clustered flowers and species with low wing loading confined their visit to solitary or less nectar rich flowers. The present study tries to investigate the flower preference of butterfly species from Lycaenidae family having very short proboscis, lower body length, lower body weight and wing span than the most species belonging from Nymphalidae, Pieridae, Papilionidae, and Hesperiidae. Results: Butterflies with shorter proboscis cannot access nectar from deeper flower. Although they mainly visit on less deeper flower to sucking nectar, butterflies with high wing loading visits clustered flowers to fulfill their energy requirements. In this study, we demonstrated flower choice of seven butterfly species belonging to Lycanidiae family. The proboscis length maintains a positive relationship with body length and body weight. Body length maintains a positive relationship with body weight and wing span. Wing span indicate a strong positive relationship with body weight. This study proved that these seven butterfly species namely Castalius rosimon (CRN), Taracus nara (TNA), Zizinia otis (ZOT), Zizula hylax (ZHY), Jamides celeno (JCE), Chilades laius (CLA), and Psuedozizeeria maha (PMA) visit frequently in Tridax procumbens (TPR), Ocimum americanum (OAM) and Syndrella nodiflora (SNO). The species do not visit Lantana camara (LCA) and Catharanthus roseus (CRO) plants. Conclusion: The present study proved that butterfly species visits frequently in Tridax procumbens (TPR), Ocimum americanum (OAM) but less frequently in Syndrella nodiflora (SNO). So, that study determined the butterfly species helps in pollination of these herbs that in turn helps the conservation of these butterfly species.

Aeroelastic stability analysis of a two-stage axially deploying telescopic wing with rigid-body motion effects

  • Sayed Hossein Moravej Barzani;Hossein Shahverdi
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.419-437
    • /
    • 2023
  • This paper presents the study of the effects of rigid-body motion simultaneously with the presence of the effects of temporal variation due to the existence of morphing speed on the aeroelastic stability of the two-stage telescopic wings, and hence this is the main novelty of this study. To this aim, Euler-Bernoulli beam theory is used to model the bending-torsional dynamics of the wing. The aerodynamic loads on the wing in an incompressible flow regime are determined by using Peters' unsteady aerodynamic model. The governing aeroelastic equations are discretized employing a finite element method based on the beam-rod model. The effects of rigid-body motion on the length-based stability of the wing are determined by checking the eigenvalues of system. The obtained results are compared with those available in the literature, and a good agreement is observed. Furthermore, the effects of different parameters of rigid-body such as the mass, radius of gyration, fuselage center of gravity distance from wing elastic axis on the aeroelastic stability are discussed. It is found that some parameters can cause unpredictable changes in the critical length and frequency. Also, paying attention to the fuselage parameters and how they affect stability is very important and will play a significant role in the design.

Development and Flight Test of Variable-Camber and Variable-Chord Morphing Flap (가변캠버 가변시위 모핑 플랩의 개발 및 비행실험)

  • Jihyun Oh;Jae-Sung Bae;Hyun Chul Lee
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.4
    • /
    • pp.34-42
    • /
    • 2024
  • This study developed a morphing technology applicable to unmanned aerial vehicles (UAVs) with diverse flight characteristics. Existing morphing technologies require additional mechanisms and driving devices, posing challenges in constructing features such as ribs and spars within the wing structure, leading to structural instability. To address this, we developed a Variable-Camber and Variable-Chord (VCC) morphing flap that could maintains a continuously transforming surface during deformation, altering both camber shape and chord length simultaneously. Furthermore, we conducted design and fabrication of UAV wings incorporating these morphing flaps, ensuring structural stability by developing specialized shapes. Furthermore, structural experiments were conducted to simulate flight loads, followed by actual flight tests to validate performances of both morphing mechanism and wings. Finally, wind tunnel tests were conducted to compare results with aerodynamic analysis, confirming the effective applicability of this morphing technology.